Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 2

    Somatic Polyembriogenesis of Larix sibirica in Embryogenic in vitro Culture
/ I. N. Tret'yakova, M. E. Park // Russ. J. Dev. Biol. - 2018. - Vol. 49, Is. 4. - P222-233, DOI 10.1134/S1062360418040069. - Cited References:46. - The study was carried out with the financial support of the Russian Foundation for Basic Research, the Government of Krasnoyarsk krai, and the Krasnoyarsk Territory Fund for Support of Scientific and Technical Activity within the framework of scientific projects nos. 16-44-240509 and 16-44-243068. . - ISSN 1062-3604. - ISSN 1608-3326
РУБ Developmental Biology

Аннотация: The initiation of somatic embryos and their propagation in the long-term proliferating embryonal suspensor mass of Larix sibirica were studied. It was found that the increase in the number of somatic embryos in the embryogenic culture occurred as a result of cleavage of the globules of the somatic embryo and the suspensor; it less often occurred as the result of budding of the suspensor and the separation of the embryonal tubes of the suspensor. In the case of long-term proliferating cell lines (more than 8 years), the rate of cleavage did not weaken. A conclusion on the identity of morphogenic processes underlying the development of zygotic and somatic embryos of conifers is made, which is confirmed by the concept of T.B. Batygina (1999) on the parallelism of their development in vivo and in vitro.

WOS,
Смотреть статью

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Div Krasnoyarsk Sci Ctr,Fed Res Ctr, Krasnoyarsk, Russia.

Доп.точки доступа:
Tret'yakova, I. N.; Park, M. E.; Russian Foundation for Basic Research; Government of Krasnoyarsk krai; Krasnoyarsk Territory Fund for Support of Scientific and Technical Activity [16-44-240509, 16-44-243068]

    Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome
/ Y. A. Putintseva, E. I. Bondar, E. P. Simonov [et al.] // BMC Genomics. - 2020. - Vol. 21, Is. 1. - Ст. 654, DOI 10.1186/s12864-020-07061-4. - Cited References:70. - This study was supported by research grants No 14.Y26.31.0004 from the Russian Federation Government for the "Genomics of the key boreal forest conifer species and their major phytopathogens in the Russian Federation" project and. 16-04-01400 from the Russian Foundation for Basic Research. OK was supported by TC4F and the KEMPE Foundations. Open Access funding enabled and organized by Projekt DEAL. . - ISSN 1471-2164
РУБ Biotechnology & Applied Microbiology + Genetics & Heredity

Аннотация: Background: Plant mitochondrial genomes (mitogenomes) can be structurally complex while their size can vary from similar to 222 Kbp inBrassica napusto 11.3 Mbp inSilene conica. To date, in comparison with the number of plant species, only a few plant mitogenomes have been sequenced and released, particularly for conifers (the Pinaceae family). Conifers cover an ancient group of land plants that includes about 600 species, and which are of great ecological and economical value. Among them, Siberian larch (Larix sibiricaLedeb.) represents one of the keystone species in Siberian boreal forests. Yet, despite its importance for evolutionary and population studies, the mitogenome of Siberian larch has not yet been assembled and studied. Results: Two sources of DNA sequences were used to search for mitochondrial DNA (mtDNA) sequences: mtDNA enriched samples and nucleotide reads generated in the de novo whole genome sequencing project, respectively. The assembly of the Siberian larch mitogenome contained nine contigs, with the shortest and the largest contigs being 24,767 bp and 4,008,762 bp, respectively. The total size of the genome was estimated at 11.7 Mbp. In total, 40 protein-coding, 34 tRNA, and 3 rRNA genes and numerous repetitive elements (REs) were annotated in this mitogenome. In total, 864 C-to-U RNA editing sites were found for 38 out of 40 protein-coding genes. The immense size of this genome, currently the largest reported, can be partly explained by variable numbers of mobile genetic elements, and introns, but unlikely by plasmid-related sequences. We found few plasmid-like insertions representing only 0.11% of the entire Siberian larch mitogenome. Conclusions: Our study showed that the size of the Siberian larch mitogenome is much larger than in other so far studied Gymnosperms, and in the same range as for the annual flowering plantSilene conica(11.3 Mbp). Similar to other species, the Siberian larch mitogenome contains relatively few genes, and despite its huge size, the repeated and low complexity regions cover only 14.46% of the mitogenome sequence.

WOS

Держатели документа:
Siberian Fed Univ, Lab Forest Genom, Genome Res & Educ Ctr, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Lab Genom Res & Biotechnol, Fed Res Ctr, Siberian Branch,Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia.
Univ Tyumen, Inst Environm & Agr Biol XBIO, Tyumen 625003, Russia.
Siberian Fed Univ, Inst Space & Informat Technol, Dept High Performance Comp, Krasnoyarsk 660074, Russia.
Russian Acad Sci, VN Sukachev Inst Forest, Lab Forest Genet & Select, Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Siberian Inst Plant Physiol & Biochem, Lab Plant Genet Engn, Siberian Branch, Irkutsk 664033, Russia.
Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk 660036, Russia.
Umea Univ, Dept Plant Physiol, UPSC, S-90187 Umea, Sweden.
August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, D-37077 Gottingen, Germany.
George August Univ Gottingen, Ctr Integrated Breeding Res, D-37075 Gottingen, Germany.
Russian Acad Sci, NI Vavilov Inst Gen Genet, Lab Populat Genet, Moscow 119333, Russia.
Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA.

Доп.точки доступа:
Putintseva, Yuliya A.; Bondar, Eugeniya I.; Simonov, Evgeniy P.; Sharov, Vadim V.; Oreshkova, Natalya V.; Kuzmin, Dmitry A.; Konstantinov, Yuri M.; Shmakov, Vladimir N.; Belkov, Vadim I.; Sadovsky, Michael G.; Keech, Olivier; Krutovsky, Konstantin V.; Krutovsky, Konstantin; Russian Federation Government [14.Y26.31.0004]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [16-04-01400]; TC4F Foundation; KEMPE Foundation; Projekt DEAL