Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 4

    Stable isotope discrimination during soil denitrification: Production and consumption of nitrous oxide
[Text] / O. V. Menyailo, B. A. Hungate // Glob. Biogeochem. Cycle. - 2006. - Vol. 20, Is. 3. - Ст. GB3025, DOI 10.1029/2005GB002527. - Cited References: 47 . - 10. - ISSN 0886-6236
РУБ Environmental Sciences + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: Measuring the stable isotope composition of nitrous oxide ( N(2)O) evolved from soil could improve our understanding of the relative contributions of the main microbial processes ( nitrification and denitrification) responsible for N(2)O formation in soil. However, interpretation of the isotopic data in N(2)O is complicated by the lack of knowledge of fractionation parameters by different microbial processes responsible for N(2)O production and consumption. Here we report isotopic enrichment for both nitrogen and oxygen isotopes in two stages of denitrification, N(2)O production and N(2)O reduction. We found that during both N(2)O production and reduction, enrichments were higher for oxygen than nitrogen. For both elements, enrichments were larger for N(2)O production stage than for N(2)O reduction. During gross N(2)O production, the ratio of delta(18)O- to-delta(15)N differed between soils, ranging from 1.6 to 2.7. By contrast, during N(2)O reduction, we observed a constant ratio of delta(18)O- to-delta(15)N with a value near 2.5. If general, this ratio could be used to estimate the proportion of N(2)O being reduced in the soil before escaping into the atmosphere. Because N(2)O- reductase enriches N(2)O in both isotopes, the global reduction of N(2)O consumption by soil may contribute to the globally observed isotopic depletion of atmospheric N(2)O.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Forest, Krasnoyarsk 660036, Russia
No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.

    Timber logging in central Siberia is the main source for recent Arctic driftwood
[Text] / L. Hellmann [et al.] // Arct. Antarct. Alp. Res. - 2015. - Vol. 47, Is. 3. - P449-460, DOI 10.1657/AAAR0014-063. - Cited References:66. - This study is part of the ongoing "DW project" supported by the Eva Mayr-Stihl Foundation and the Swiss Federal Research Institute WSL. Additional support was received from the Czech project "Building up a multidisciplinary scientific team focused on drought" (No. CZ.1.07/2.3.00/20.0248). V. Trotsiuk and L. Hulsmann provided technical support. J. Ejdesgaard and E. av Kak collected DW samples on the Faroe Islands, and D. Galvan and F. Charpentier contributed to discussion. Tree-ring data for Siberia were partly assembled under the Russian Science Foundation project 14-14-00295. We are thankful to all ITRDB contributors. We thank three anonymous reviewers and A. Jennings for helpful and constructive comments. . - ISSN 1523-0430. - ISSN 1938-4246
РУБ Environmental Sciences + Geography, Physical

Аннотация: Recent findings indicated spruce from North America and larch from eastern Siberia to be the dominating tree species of Arctic driftwood throughout the Holocene. However, changes in source region forest and river characteristics, as well as ocean current dynamics and sea ice extent likely influence its spatiotemporal composition. Here, we present 2556 driftwood samples from Greenland, Iceland, Svalbard, and the Faroe Islands. A total of 498 out of 969 Pinus sylvestris ring width series were cross-dated at the catchment level against a network of Eurasian boreal reference chronologies. The central Siberian Yenisei and Angara Rivers account for 91% of all dated pines, with their outermost rings dating between 1804 and 1999. Intensified logging and timber rafting along the Yenisei and Angara in the mid-20th century, together with high discharge rates, explain the vast quantity of material from this region and its temporal peak ca. 1960. Based on the combined application of wood-anatomical and dendrochronological techniques on a well-replicated data set, our results question the assumption that Arctic driftwood mainly consists of millennial-old larch and spruce. Nevertheless, data from other species and regions, together with longer boreal reference chronologies, are needed for generating reliable proxy archives at the interface of marine and terrestrial environments.

WOS,
Scopus

Держатели документа:
WSL, Swiss Fed Res Inst, CH-8903 Birmensdorf, Switzerland.
Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland.
Univ Freiburg, Inst Forest Sci IWW, D-79106 Freiburg, Germany.
VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia.
Iceland Forest Serv, IS-116 Reykjavik, Iceland.
Johannes Gutenberg Univ Mainz, D-55128 Mainz, Germany.
Inst Plant & Anim Ecol UD RAS, Ekaterinburg 620144, Russia.
North Eastern Fed Univ, Yakutsk 677000, Russia.
Melnikov Permafrost Inst, Yakutsk 677010, Russia.
Stolby Natl Wildlife Nat Reserve, Krasnoyarsk 660006, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Swiss Fed Inst Technol, Inst Terr Ecosyst, CH-8092 Zurich, Switzerland.
Global Change Res Ctr AS CR, Brno 60300, Czech Republic.

Доп.точки доступа:
Hellmann, Lena; Tegel, Willy; Kirdyanov, Alexander V.; Eggertsson, Olafur; Esper, Jan; Agafonov, Leonid; Nikolaev, Anatoly N.; Knorre, Anastasia A.; Myglan, Vladimir S.; Churakova, O.; Schweingruber, Fritz H.; Nievergelt, Daniel; Verstege, Anne; Buntgen, U.; Eva Mayr-Stihl Foundation; Swiss Federal Research Institute WSL; Czech project "Building up a multidisciplinary scientific team focused on drought" [CZ.1.07/2.3.00/20.0248]; Russian Science Foundation [14-14-00295]

    Regional coherency of boreal forest growth defines Arctic driftwood provenancing
/ L. Hellmann [et al.] // Dendrochronologia. - 2016. - Vol. 39: Workshop on Current Status and the Potential of Tree-Ring Research in (JAN 20-21, 2015, Krasnoyarsk, RUSSIA). - P3-9, DOI 10.1016/j.dendro.2015.12.010. - Cited References:53 . - ISSN 1125-7865. - ISSN 1612-0051
РУБ Plant Sciences + Forestry + Geography, Physical
Рубрики:
MACKENZIE RIVER DRIFTWOOD
   TREE-RING DATA

   CENTRAL SIBERIA

   ORIGIN

Кл.слова (ненормированные):
Driftwood -- Arctic -- Dendro-provenancing -- Boreal

Аннотация: Arctic driftwood represents a unique proxy archive at the interface of marine and terrestrial environments. Combined wood anatomical and dendrochronological analyses have been used to detect the origin of driftwood and may allow past timber floating activities, as well as past sea ice and ocean current dynamics to be reconstructed. However, the success of driftwood provenancing studies depends on the length, number, and quality of circumpolar boreal reference chronologies. Here, we introduce a Eurasian-wide high-latitude network of 286 ring width chronologies from the International Tree Ring Data Bank (ITRDB) and 160 additional sites comprising the three main boreal conifers Pinus, Larix, and Picea. We assess the correlation structure within the network to identify growth patterns in the catchment areas of large Eurasian rivers, the main driftwood deliverers. The occurrence of common growth patterns between and differing patterns within catchments indicates the importance of biogeographic zones for ring width formation and emphasizes the degree of spatial precision when provenancing. Reference chronologies covering millennial timescales are so far restricted to a few larch sites in Central and Eastern Siberia (eastern Taimyr, Yamal Peninsula and north-eastern Yakutia), as well as several pine sites in Scandinavia, where large rivers are missing though. The general good spatial coverage of tree-ring sites across northern Eurasia indicates the need for updating and extending existing chronologies rather than developing new sites. (C) 2016 Elsevier GmbH. All rights reserved.

WOS,
Смотреть статью

Держатели документа:
WSL, Swiss Fed Res Inst, Birmensdorf, Switzerland.
Oeschger Ctr Climate Change Res, Bern, Switzerland.
Inst Plant & Anim Ecol UD RAS, Ekaterinburg, Russia.
Swiss Fed Inst Technol, Inst Terr Ecosyst, Zurich, Switzerland.
Univ Bern, Dendrolab Ch, Bern, Switzerland.
Johannes Gutenberg Univ Mainz, Mainz, Germany.
Iceland Forest Serv, Reykjavik, Iceland.
VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia.
Stolby Natl Wildlife Nat Reserve, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
North Eastern Fed Univ, Yakutsk, Russia.
Melnikov Permafrost Inst, Yakutsk, Russia.
RAS, Inst Geog, Moscow, Russia.
Univ Freiburg, Inst Forest Sci IWW, Freiburg, Germany.
Global Change Res Ctr AS CR, Brno, Czech Republic.

Доп.точки доступа:
Hellmann, Lena; Agafonov, Leonid; Churakova, O.; Duthorn, Elisabeth; Eggertsson, Olafur; Esper, Jan; Kirdyanov, Alexander V.; Knorre, Anastasia A.; Moiseev, Pavel; Myglan, Vladimir S.; Nikolaev, Anatoly N.; Reinig, Frederick; Schweingruber, Fritz; Solomina, Olga; Tegel, Willy; Buntgen, Ulf; buentgen, ulf

    Development of Nuclear Microsatellite Markers with Long (Tri-, Tetra-, Penta-, and Hexanucleotide) Motifs for Three Larch Species Based on the de novo Whole Genome Sequencing of Siberian Larch (Larix sibirica Ledeb.)
/ N. V. Oreshkova [et al.] // Russ. J. Genet. - 2019. - Vol. 55, Is. 4. - P444-450, DOI 10.1134/S1022795419040094. - Cited References:22. - The study was done as a part of the project "Genomics of the Key Boreal Forest Conifer Species and Their Major Phytopathogens in the Russian Federation" funded by the Government of the Russian Federation (grant no. 14.Y26.31.0004). . - ISSN 1022-7954. - ISSN 1608-3369
РУБ Genetics & Heredity
Рубрики:
POPULATION-STRUCTURE
   LOCI

   IDENTIFICATION

   ORIGIN

Кл.слова (ненормированные):
conifers -- genetic diversity -- heterozygosity -- Larix -- larch -- microsatellite markers -- SSR -- whole genome sequencing

Аннотация: Siberian larch (Larix sibirica Ledeb.) is one of the major boreal tree species in Eurasia and has a considerable economic and ecological value. Despite that importance, the development and use of microsatellite markers in this species remain limited. Microsatellite markers are considered to be a valuable tool for estimation of population diversity and structure. Availability of a draft reference assembly of the Siberian larch genome allowed us to identify 1015 microsatellite loci or simple sequence repeats (SSRs) with tri-, tetra-, penta-, and hexanucleotide motifs. For 60 of them PCR primers were designed and tested for amplification in L. sibirica and for their within-genus transferability to L. gmelinii (Rupr.) Rupr. and L. cajanderi Mayr. Here, we present a set of 14 reliable and polymorphic new nuclear SSR markers that can be used for further population genetic studies, breeding programs, and timber origin identification.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Siberian Fed Univ, Genome Res & Educ Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Georg August Univ Gottingen, D-37077 Gottingen, Germany.
Russian Acad Sci, Vavilov Inst Gen Genet, Moscow 119991, Russia.
Texas A&M Univ, College Stn, TX 77843 USA.

Доп.точки доступа:
Oreshkova, N. V.; Bondar, E. I.; Putintseva, Yu. A.; Sharov, V. V.; Kuzmin, D. A.; Krutovsky, K. V.; Krutovsky, Konstantin; Government of the Russian Federation [14.Y26.31.0004]