Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 5

    Tree-ring growth of Gmelin larch under contrasting local conditions in the north of Central Siberia
/ A. V. Kirdyanov, A. S. Prokushkin, M. A. Tabakova // Dendrochronologia. - 2013. - Vol. 31, Is. 2. - P114-119, DOI 10.1016/j.dendro.2012.10.003. - Cited References: 54. - The study was financed by Russian Foundation for Basic Research (12-04-00542), Swiss NSF (SCOPES IZ73Z0_128035) and the Grant of the Government of RF for outstanding scientists No. 11.G34.31.0014 to Prof. E.-D.Schulze. Work of TMA was also supported by the Grant of the President of RF for Young Scientists (MK-5498.2012.4). . - 6. - ISSN 1125-7865
РУБ Plant Sciences + Forestry

Аннотация: While the forest-tundra zone in Siberia, Russia has been dendroclimatologically well-studied in recent decades, much less emphasis has been given to a wide belt of northern taiga larch forests located to the south. In this study, climate and local site conditions are explored to trace their influence on radial growth of Gmelin larch (Larix gmelinii (Rupr.) Rupr.) trees developed on permafrost soils in the northern taiga. Three dendrochronological sites characterized by great differences in thermo-hydrological regime of soils were established along a short (ca. 100 m long) transect: on a river bank (RB), at riparian zone of a stream (RZ) and on a terrace (TER). Comparative analysis of the rate and year-to-year dynamics of tree radial growth among sites revealed considerable difference in both raw and standardized tree-ring width (TRW) chronologies obtained for the RZ site, characterized by shallow soil active layer depth and saturated soils. Results of dendroclimatic analysis indicated that tree-ring growth at all the sites is mostly defined by climatic conditions of a previous year and precipitation has stronger effect on TRW chronologies in comparison to the air temperatures. Remarkably, a great difference in the climatic response of TRW chronologies has been obtained for trees growing within a very short distance from each other. The positive relation of tree-ring growth with precipitation, and negative to temperature was observed in the dry site RB. In contrary, precipitation negatively and temperature positively influenced tree radial growth of larch at the water saturated RZ. Thus, a complicate response of northern Siberian larch forest productivity to the possible climate changes is expected due to great mosaic of site conditions and variability of environmental factors controlling tree-ring growth at different sites. Our study demonstrates the new possibilities for the future dendroclimatic research in the region, as various climatic parameters can be reconstructed from tree-ring chronologies obtained for different sites. (c) 2013 Elsevier GmbH. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Kirdyanov, Alexander V.
Prokushkin, Anatoly S.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Tabakova, Maria A.] Siberian Fed Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Kirdyanov, A.V.; Prokushkin, A.S.; Tabakova, M.A.

    Fluxes of dissolved organic matter in larch forests in the cryolithozone of central Siberia
[Text] / A. S. Prokushkin [et al.] // Russ. J. Ecol. - 2008. - Vol. 39, Is. 3. - P151-159, DOI 10.1134/S1067413608030016. - Cited References: 33 . - 9. - ISSN 1067-4136
РУБ Ecology
Рубрики:
LATITUDE SOILS
   CARBON

   PERMAFROST

   NITROGEN

Кл.слова (ненормированные):
dissolved organic matter -- larch biogeocenoses -- drainage basin -- permafrost -- creek -- export

Аннотация: Fluxes of dissolved organic matter (DOM) in larch biogeocenoses and its export from the drainage basin have been studied in the zone of continuous permafrost. A comparative assessment of DOM input into the soil has been made on slopes of northern and southern exposures (as variants reflecting the current state and warming). The dynamics of DOM export in a creek depending on the increasing depth of the active soil horizon in the drainage area have been revealed. It is concluded that an increase in the depth of the seasonally thawing layer induced by global warming will not have any significant effect on the amount of annual DOM export. Reduction of DOM export may be expected upon a decrease in litter stocks under the effect of their mineralization and forest fires.

Полный текст,
WOS,
Scopus

Держатели документа:
[Guggenberger, H.] Univ Halle Wittenberg, D-06108 Halle, Saale, Germany
[Prokushkin, A. S.
Tokareva, I. V.
Prokushkin, S. G.
Abaimov, A. P.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Prokushkin, A.S.; Tokareva, I.V.; Prokushkin, S.G.; Abaimov, A.P.; Абаимов Анатолий Платонович; Guggenberger, H...

    SOTOPIC SIGNATURE OF METHANE EFFLUX FROM SOIL SURFACE OF SIBERIAN ARCTIC AND SUB-ARCTIC ECOSYSTEMS
/ S. Evgrafova [et al.] // WATER RESOURCES, FOREST, MARINE AND OCEAN ECOSYSTEMS CONFERENCE : STEF92 TECHNOLOGY LTD, 2016. - 16th International Multidisciplinary Scientific Geoconference (SGEM (JUN 30-JUL 06, 2016, Albena, BULGARIA). - P199-204. - (International Multidisciplinary Scientific GeoConference-SGEM). - Cited References:15 . -
РУБ Ecology + Oceanography + Soil Science + Water Resources
Рубрики:
PERMAFROST
   WETLANDS

   CLIMATE

   DELTA

Кл.слова (ненормированные):
permafrost-affected soils -- forest and tundra ecosystems -- methane -- delta -- C-13 signature

Аннотация: We investigated isotopic signature of methane efflux from soil surface of Siberian arctic and sub-arctic ecosystems in sites in Siberia. In the boreal ecosystem of the Tura site (64 degrees 15'N, 100 13'E) the delta C-13 signature of methane (-43%o for south facing slope and -35%o from north facing slope) showed low methane production potential of investigated soils. Two years of monitoring of the delta C-13(CH4) signatures from surface of ice-wedge polygon of Samoylov island (72 degrees 22'N, 126 degrees 28'E) showed that the delta C-13 signature were different regarding to temperature and precipitation. The mean of delta C-13(CH4) emitted from the polygon wall ranged from 72.5 +/- 1.9%. to-47.3 +/- 1.5%. The same for polygon center ranged from-67.1 +/- 2.0% to-62.4 +/- 1.7%. Almost no difference between delta C-13(CH4) signature of years observed could mean that conditions for methane production are possibly quite stable. With respect to methane emission both permafrost ecosystems are thus very contrasting.

WOS

Держатели документа:
RAS, VN Sukachev Inst Forest, SB, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Leibniz Univ Hannover, Inst Soil Sci, Hannover, Germany.

Доп.точки доступа:
Evgrafova, Svetlana; Novikov, Oleg; Alexandrov, Dmitry; Guggenberger, Georg

    WATER MASS AND THAW DEPTH RELATIONSHIP WITHIN CENTRAL SIBERIA
/ S. Im // WATER, RESOURCES, FOREST, MARINE AND OCEAN ECOSYSTEMS CONFERENCE : STEF92 TECHNOLOGY LTD, 2016. - 16th International Multidisciplinary Scientific Geoconference (SGEM (JUN 30-JUL 06, 2016, Albena, BULGARIA). - P835-842. - (International Multidisciplinary Scientific GeoConference-SGEM). - Cited References:15 . -
РУБ Water Resources
Рубрики:
PERMAFROST
Кл.слова (ненормированные):
Central Siberia -- GRACE -- thaw depth -- cryolithozone

Аннотация: The permafrost region represents about 25% of the northern hemisphere (23x10(6) km(2)) and covers about 63% of the area of the Russian Federation (10x10(6) km(2)). Arctic and sub-arctic territories are particularly sensitive to temperature variations. Permafrost ground temperature has increased by 0.3-2.0 degrees C in northern Russia during the last four decades. This will result in permafrost thawing and changes in water balance. Until 2050, the thaw depth in the northern part of Siberia could increase by more than 50%. The remote sensing technique is useful in the studies of permafrost area. Remotely sensed gravity measurements from the GRACE (Gravity Recovery and Climate Experiment) mission allowed identifying of significant decrease of water mass in ice regions. The aim of this investigation was to reveal relationships between active layer changes and water mass anomalies extracted from GRACE data in the cryolithozone of Central Siberia. Six test sites with available active layer data were investigated. Correlation analysis was carried out to determine relationships of the thaw depth with equivalent water thickness anomalies (EWTA). June EWTA significantly correlates with the thaw depth in July on the Samoilov Island (r = 0.82, p < 0.03). This means that an increasing amount of water in soil results in a better transfer of heat to the frozen soils, thus can result in thawing at greater depth. Depending on site mean thaw depth values positively correlates with April, May, June and August EWTA (r = 0.72-0.98, p < 0.05). For Igarka site, the negative correlation of thaw depth in September with August EWTA was revealed (r = -0.99, p < 0.1). This is opposed to the observed on Samoilov Island, and probably, explained by differences in hydrological regimes.

WOS

Держатели документа:
RAS, VN Sukachev Inst Forest SB, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
MF Reshetnev Siberian State Aerosp Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Im, Sergei

    The biophysical climate mitigation potential of boreal peatlands during the growing season
/ M. Helbig, J. M. Waddington, P. Alekseychik [et al.] // Environ. Res. Lett. - 2020. - Vol. 15, Is. 10. - Ст. 104004, DOI 10.1088/1748-9326/abab34. - Cited References:109. - This work is part of the Boreal Water Futures project and supported through the Global Water Futures research program. We thank all the EC flux tower teams for sharing their data. We are grateful to Myroslava Khomik, Adam Green, Inke Forbrich, Eric Kessel, Gordon Drewitt, and Pasi Kolari for helping with data preparation and to Inke Forbrich on feedback on an earlier version of the manuscript.; I M acknowledges funding from ICOS-FINLAND (Grant 281255), Finnish Center of Excellence (Grant 307331), and EU Horizon-2020 RINGO project (Grant 730944). A P acknowledges funding through the research project #18-45-243003 (RFBR and Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science) and support for flux tower sites RU-ZOP and RU-ZOB through the Max Planck Society. A D and J T acknowledges funding from US National Science foundation #DEB-1440297 and DOE Ameriflux Network Management Project award to ChEAS core site cluster. T A B, A G B, and R J acknowledge support received through grants from the Fluxnet Canada ResearchNetwork (2002-2007; NSERC, CFCAS, and BIOCAP) and the Canadian Carbon Program (2008-2012; CFCAS) and by an NSERC (Climate Change and Atmospheric Research) Grant to the Changing Cold Regions Network (CCRN; 2012-2016) and an NSERC Discovery Grant. H I and M U acknowledge support by the Arctic Challenge for Sustainability II (ArCS II) project (JPMXD1420318865). J K and A V acknowledge funding by RFBR project number 19-04-01234-a. B A acknowledges funding through NASA, NSERC, BIOCAP Canada, the Canadian Foundation for Climate and Atmospheric Sciences, and the Canadian Foundation for Innovation for flux measurements at CA-MAN and through the Canadian Forest Service, the Natural Sciences and Engineering Research Council of Canada (NSERC), the FLUXNET-Canada Network (NSERC, the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), and BIOCAP Canada), the Canadian Carbon Program (CFCAS), Parks Canada, and the Program of Energy Research and Development (PERD). O S acknowledges funding by the Canada Research Chairs, Canada Foundation for Innovation Leaders Opportunity Fund, and Natural Sciences and Engineering Research Council Discovery Grant Programs. L B F acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC), the FLUXNET-Canada Network (NSERC, the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), and BIOCAP Canada), and the Canadian Carbon Program (CFCAS). M B N, M O L, M P, and J C gratefully acknowledge funding from the Swedish research infrastructures SITES and ICOS Sweden and research grants from Kempe Foundations, (#SMK-1743); VR (#2018-03966) and Formas, (#2016-01289) and M P gratefully acknowledges funding from Knut and Alice Wallenberg Foundation (#2015.0047).; M W acknowledge funding by the German Research Foundation (Grant Wi 2680/2-1) and the European Union (Grant 36993). B R K R and L K acknowledge support by the Cluster of Excellence 'CliSAP' (EXC177) of the University of Hamburg, funded by the German Research Foundation. H I acknowledges JAMSTEC and IARC/UAF collaboration study (JICS) and Arctic Challenge for Sustainability Project (ArCS). E H acknowledges the support of the FLUXNET-Canada Network, the Canadian Carbon Program, and Ontario Ministry of the Environment, Conservation and Parks. E L acknowledges funding by RFBR and Government of the KhantyMansi Autonomous Okrug -Yugra project #18-44-860017 and grant of the Yugra State University (13-01-20/39). M G and P T acknowledge NSERC funding (RDCPJ514218). M A, M K, A L. and J P T acknowledge the support by the Ministry of Transport and Communication through ICOS-Finland, Academy of Finland (grants 296888 and 308511), and Maj and Tor Nessling Foundation. T M acknowledge funding by Yakutian Scientific Center of Siberian Branch of Russian Academy of Sciences (Grant FWRS-2020-0012). . - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests-the dominant boreal forest type-and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a similar to 20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 degrees C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (similar to 45 degrees N) and decrease toward the northern limit of the boreal biome (similar to 70 degrees N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.

WOS

Держатели документа:
McMaster Univ, Sch Earth Environm & Soc, Hamilton, ON, Canada.
Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada.
Univ Helsinki, Inst Atmospher & Earth Syst Res Phys, Fac Sci, Helsinki, Finland.
Nat Resources Inst Finland LUKE, Bioecon & Environm, Helsinki, Finland.
Univ Manitoba, Dept Soil Sci, Winnipeg, MB, Canada.
Finnish Meteorol Inst, Helsinki, Finland.
Environm & Climate Change Canada, Climate Res Div, Saskatoon, SK, Canada.
Univ Saskatchewan, Global Inst Water Secur, Saskatoon, SK, Canada.
Univ British Columbia, Fac Land & Food Syst, Vancouver, BC, Canada.
Michigan State Univ, Dept Geog Environm & Spatial Sci, E Lansing, MI 48824 USA.
Swedish Univ Agr Sci, Dept Forest Ecol & Management, Umea, Sweden.
Univ Wisconsin, Dept Atmospher Sci & Ocean Sci, Madison, WI USA.
Worcester State Univ, Dept Earth Environm & Phys, Worcester, MA USA.
Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99775 USA.
Univ Lethbridge, Dept Biol Sci, Lethbridge, AB, Canada.
Univ Copenhagen, Dept Geosci & Nat Resource Management, Copenhagen, Denmark.
Univ Quebec Montreal Geotop, Montreal, PQ, Canada.
Swedish Univ Agr Sci, Dept Ecol, Uppsala, Sweden.
McGill Univ, Dept Geog, Montreal, PQ, Canada.
Lund Univ, Ctr Environm & Climate Res, Lund, Sweden.
Carleton Univ, Dept Geog & Environm Studies, Ottawa, ON, Canada.
Natl Agr & Food Res Org, Inst Agroenvironm Sci, Tsukuba, Ibaraki, Japan.
Univ Laval, Dept Genie Civil & Genie Eaux, Quebec City, PQ, Canada.
Shinshu Univ, Dept Environm Sci, Fac Sci, Matsumoto, Nagano, Japan.
Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow, Russia.
Univ Hamburg, Inst Soil Sci, Hamburg, Germany.
Yugra State Univ, Ctr Environm Dynam & Climate Changes, Khanty Mansiysk, Russia.
Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden.
Wilfrid Laurier Univ, Cold Reg Res Ctr, Waterloo, ON, Canada.
Russian Acad Sci, Inst Biol Problems Cryolithozone, Siberian Branch, Yakutsk, Russia.
Nagoya Univ, Grad Sch Bioagr Sci, Nagoya, Aichi, Japan.
Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON, Canada.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst, Krasnoyarsk, Russia.
Univ Arkansas, Dept Biol & Agr Engn, Fayetteville, AR 72701 USA.
Univ Montreal, Dept Geog, Montreal, PQ, Canada.
Univ Montreal, Ctr Etud Nord, Montreal, PQ, Canada.
McGill Univ, Dept Nat Resource Sci, Ste Anne De Bellevue, PQ, Canada.
Univ Eastern Finland, Sch Forest Sci, Joensuu, Finland.
Osaka Prefecture Univ, Grad Sch Life & Environm Sci, Sakai, Osaka, Japan.
Univ Helsinki, Inst Atmospher & Earth Syst Res Forest Sci, Fac Agr & Forestry, Helsinki, Finland.
Ernst Moritz Arndt Univ Greifswald, Inst Bot & Landscape Ecol, Greifswald, Germany.
Univ Alberta, Dept Renewable Resources, Edmonton, AB, Canada.

Доп.точки доступа:
Helbig, Manuel; Waddington, James M.; Alekseychik, Pavel; Amiro, Brian; Aurela, Mika; Barr, Alan G.; Black, T. Andrew; Carey, Sean K.; Chen, Jiquan; Chi, Jinshu; Desai, Ankur R.; Dunn, Allison; Euskirchen, Eugenie S.; Flanagan, Lawrence B.; Friborg, Thomas; Garneau, Michelle; Grelle, Achim; Harder, Silvie; Heliasz, Michal; Humphreys, Elyn R.; Ikawa, Hiroki; Isabelle, Pierre-Erik; Iwata, Hiroki; Jassal, Rachhpal; Korkiakoski, Mika; Kurbatova, Juliya; Kutzbach, Lars; Lapshina, Elena; Lindroth, Anders; Lofvenius, Mikaell Ottosson; Lohila, Annalea; Mammarella, Ivan; Marsh, Philip; Moore, Paul A.; Maximov, Trofim; Nadeau, Daniel F.; Nicholls, Erin M.; Nilsson, Mats B.; Ohta, Takeshi; Peichl, Matthias; Petrone, Richard M.; Prokushkin, Anatoly; Quinton, William L.; Roulet, Nigel; Runkle, Benjamin R. K.; Sonnentag, Oliver; Strachan, Ian B.; Taillardat, Pierre; Tuittila, Eeva-Stiina; Tuovinen, Juha-Pekka; Turner, Jessica; Ueyama, Masahito; Varlagin, Andrej; Vesala, Timo; Wilmking, Martin; Zyrianov, Vyacheslav; Schulze, Christopher; ICOS-FINLAND [281255]; Finnish Center of Excellence [307331]; EU Horizon-2020 RINGO project [730944]; Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science [18-45-243003]; RFBRRussian Foundation for Basic Research (RFBR) [18-45-243003, 19-04-01234-a]; Max Planck SocietyMax Planck SocietyFoundation CELLEX; US National Science foundationNational Science Foundation (NSF) [DEB-1440297]; DOE Ameriflux Network Management ProjectUnited States Department of Energy (DOE); Fluxnet Canada ResearchNetwork (2002-2007; NSERC); Fluxnet Canada ResearchNetwork (2002-2007; CFCAS); Fluxnet Canada ResearchNetwork (2002-2007; BIOCAP); Canadian Carbon Program (2008-2012; CFCAS); NSERC (Climate Change and Atmospheric Research); NSERC Discovery GrantNatural Sciences and Engineering Research Council of Canada; Arctic Challenge for Sustainability II (ArCS II) project [JPMXD1420318865]; NASANational Aeronautics & Space Administration (NASA); BIOCAP Canada; Canadian Foundation for Climate and Atmospheric Sciences; Natural Sciences and Engineering Research Council of Canada (NSERC)Natural Sciences and Engineering Research Council of Canada; FLUXNET-Canada Network (NSERC); FLUXNET-Canada Network (Canadian Foundation for Climate and Atmospheric Sciences (CFCAS)); FLUXNET-Canada Network (BIOCAP Canada); Parks Canada; Program of Energy Research and Development (PERD)Natural Resources Canada; Canada Research ChairsCanada Research ChairsCGIAR; Natural Sciences and Engineering Research CouncilNatural Sciences and Engineering Research Council of Canada; Canadian Carbon Program (CFCAS); Canada Foundation for Innovation Leaders Opportunity FundCanada Foundation for Innovation; Kempe Foundations [SMK-1743]; VRSwedish Research Council [2018-03966]; FormasSwedish Research Council Formas [2016-01289]; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation [2015.0047]; German Research FoundationGerman Research Foundation (DFG) [Wi 2680/2-1]; European UnionEuropean Union (EU) [36993]; Cluster of Excellence 'CliSAP' of the University of Hamburg - German Research Foundation [EXC177]; FLUXNET-Canada Network; Canadian Carbon Program; Ontario Ministry of the Environment, Conservation and Parks; Yugra State University [13-01-20/39]; NSERCNatural Sciences and Engineering Research Council of Canada [RDCPJ514218]; Ministry of Transport and Communication through ICOS-Finland; Academy of FinlandAcademy of Finland [296888, 308511]; Maj and Tor Nessling Foundation; Yakutian Scientific Center of Siberian Branch of Russian Academy of Sciences [FWRS-2020-0012]; RFBRRussian Foundation for Basic Research (RFBR); Government of the KhantyMansi Autonomous Okrug -Yugra project [18-44-860017]; Swedish research infrastructure SITES Sweden; Swedish research infrastructure ICOS Sweden; Global Water Futures research program; NSERCNatural Sciences and Engineering Research Council of Canada; Canadian Foundation for InnovationCanada Foundation for Innovation; Canadian Forest ServiceNatural Resources CanadaCanadian Forest Service