Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 3

    Spatial distribution and temporal dynamics of high-elevation forest stands in southern Siberia
[Text] / V. I. Kharuk [et al.] // Glob. Ecol. Biogeogr. - 2010. - Vol. 19, Is. 6. - P822-830, DOI 10.1111/j.1466-8238.2010.00555.x. - Cited References: 33. - This research was supported by the NASA Science Mission Directorate, Terrestrial Ecology Program, the Siberian Branch Russian Academy of Science Program no. 23.3.33, and grant no. MK-2497.2009.5. Thanks to Joanne Howl for edits of the manuscript. . - 9. - ISSN 1466-822X
РУБ Ecology + Geography, Physical

Аннотация: Aim To evaluate the hypothesis that topographic features of high-elevation mountain environments govern spatial distribution and climate-driven dynamics of the forest. Location Upper mountain forest stands (elevation range 1800-2600 m) in the mountains of southern Siberia. Methods Archive maps, satellite and on-ground data from1960 to 2002 were used. Data were normalized to avoid bias caused by uneven distribution of topographic features (elevation, azimuth and slope steepness) within the analysed area. Spatial distribution of forest stands was analysed with respect to topography based on a digital elevation model (DEM). Results Spatial patterns in mountain forests are anisotropic with respect to azimuth, slope steepness and elevation. At a given elevation, the majority of forests occupied slopes with greater than mean slope values. As the elevation increased, forests shifted to steeper slopes. The orientation of forest azimuth distribution changed clockwise with increase in elevation (the total shift was 120 degrees), indicating a combined effect of wind and water stress on the observed forest patterns. Warming caused changes in the forest distribution patterns during the last four decades. The area of closed forests increased 1.5 times, which was attributed to increased stand density and tree migration. The migration rate was 1.5 +/- 0.9 m year-1, causing a mean forest line shift of 63 +/- 37 m. Along with upward migration, downward tree migration onto hill slopes was observed. Changes in tree morphology were also noted as widespread transformation of the prostrate forms of Siberian pine and larch into erect forms. Main conclusions The spatial pattern of upper mountain forests as well as the response of forests to warming strongly depends on topographic relief features (elevation, azimuth and slope steepness). With elevation increase (and thus a harsher environment) forests shifted to steep wind-protected slopes. A considerable increase in the stand area and increased elevation of the upper forest line was observed coincident with the climate warming that was observed. Warming promotes migration of trees to areas that are less protected from winter desiccation and snow abrasion (i.e. areas with lower values of slope steepness). Climate-induced forest response has significantly modified the spatial patterns of high-elevation forests in southern Siberia during the last four decades, as well as tree morphology.

Полный текст,
WOS,
Scopus

Держатели документа:
[Kharuk, Vyacheslav I.
Im, Sergey T.] Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Ranson, Kenneth J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[Vdovin, Alexander S.] Siberian Fed Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Kharuk, V.I.; Ranson, K.J.; Im, S.T.; Vdovin, A.S.

    Climate-induced mountain tree-line evolution in southern Siberia
[Text] / V. I. Kharuk [et al.] // Scand. J. Forest Res. - 2010. - Vol. 25, Is. 5. - P446-454, DOI 10.1080/02827581.2010.509329. - Cited References: 47. - This research was supported by the NASA Science Mission Directorate, Terrestrial Ecology Program, Siberian Branch Russian Academy of Science Program 23.3.33 and grant MK-2497.2009.5. The authors thank Dr V. Miglan for help with the dendrochronology analysis and Dr Joanne Howl for editing this manuscript. . - 9. - ISSN 0282-7581
РУБ Forestry

Аннотация: The elevational tree-line change within the transitional zone between boreal forest and Mongolian steppes was quantified for the last millennium. The basic approach included studies along transects and measurements of tree-line positions to identify current, historical, refugee and regeneration tree lines. Tree mortality and natality were determined based on dendrochronology analysis. Tree mortality in the sixteenth to eighteenth centuries coincided with the Little Ice Age, while tree establishment was stimulated by warming at the end of nineteenth century. Downward shifts in tree line varied by an order of magnitude. The current tree-line position reoccupied the historical tree line in some transects, and was below or above the historical line in others. The regeneration line surpassed the historical tree line by 91 +/- 46 m (mean +/- SD). Such a heterogeneous response was attributed to local topoclimatic conditions and sapling recruitment efficiency. A mean annual 1 degrees C increase in temperature was associated with an upward shift of the tree line by about 70 m. The upward migration rate of the current tree line was about 0.8 m year-1 during the last century. The regeneration migration rate was about 2.3 m year-1 over the past three decades. Finally, the transformation of krummholz forms of larch and Siberian pine into arborescent form was documented.

Полный текст,
WOS,
Scopus

Держатели документа:
[Kharuk, Vyacheslav I.
Im, Sergey T.
Dvinskaya, Maria L.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Ranson, Kenneth J.] NASAs Goddard Space Flight Ctr, Greenbelt, MD 20771 USA

Доп.точки доступа:
Kharuk, V.I.; Im, S.T.; Dvinskaya, M.L.; Ranson, K.J.

    Response of Pinus sibirica and Larix sibirica to climate change in southern Siberian alpine forest-tundra ecotone
[Text] / V. I. Kharuk [et al.] // Scand. J. Forest Res. - 2009. - Vol. 24, Is. 2. - P130-139, DOI 10.1080/02827580902845823. - Cited References: 42. - This research was supported in part by the NASA Science Mission Directorate, Terrestrial Ecology and Cryospheric Sciences Programs and Russian Fund for Fundamental Investigations No. 06-05-64939. Special thanks to Joanne Howl, DVM, for assisting with final preparation of the manuscript. . - 10. - ISSN 0282-7581
РУБ Forestry

Аннотация: A warming climate provides competitive advantages to Siberian pine (Pinus sibirica Du Tour) in areas with sufficient precipitation. The warmer temperatures observed in central Siberia over the past three decades appear to have had a noticeable effect on growth of Siberian pine and larch (Larix sibirica Ledeb.) in the south Siberian Mountain forest-tundra ecotone. Larch is more tolerant of harsh climates and exhibits an arboreal growth form, whereas Siberian pine is in krummholz form. Larch also has an advantage at the upper tree limit and in areas with low precipitation. Since the mid-1980s there have been measurable increases in growth increments, stand densification, regeneration propagation into the alpine tundra and transformation of krummholz into arboreal forms. Warming winter temperatures have been sufficient for increased survival of regeneration. Regeneration responded to temperature increase of 1C by migration to areas 10-40 m higher in elevation. Regeneration has propagated into the alpine tundra at the rate of similar to 1.0-2.0 m year-1. Siberian pine and larch regeneration surpassed their upper historical limit by 10-80 m in elevation. While increased tree growth and migration into alpine tundra areas affect the regional carbon balance, it will also decrease albedo, which may increase warming at the regional level.

Полный текст,
WOS,
Scopus

Держатели документа:
[Kharuk, Viacheslav I.
Im, Sergey T.
Dvinskaya, Maria L.] VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Ranson, Kenneth J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA

Доп.точки доступа:
Kharuk, V.I.; Ranson, K.J.; Im, S.T.; Dvinskaya, M.L.; Terrestrial Ecology and Cryospheric Sciences Programs and Russian Fund for Fundamental Investigations [06-05-64939]