Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 4

    Assessment of the state of soil microbial cenoses in the forest-tundra zone under conditions of airborne industrial pollution
/ A. V. Bogorodskaya [et al.] // Eurasian Soil Sci. - 2012. - Vol. 45, Is. 5. - P521-531, DOI 10.1134/S106422931205002X. - Cited References: 46 . - 11. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The quantitative and functional responses of soil microbial cenoses in the forest-tundra zone to pollution have been studied in the area exposed to emissions from the Norilsk Mining and Metallurgical Works. The strongest structural and functional disturbances of the soil biota have been recorded on the plots with completely destroyed vegetation. A decrease in the content of microbial carbon and an elevated respiration rate in the technogenically transformed soils provide evidence for the functioning of the microbial communities under stress caused by the continuous input of aggressive pollutants. The degree of transformation and the contents of technogenic elements (Ni, Cu, Co, Pb, and S) in the organic horizons of the forest-tundra soils are the major factors affecting the development and functioning of the soil microbial cenoses.

Полный текст,
Scopus,
WOS

Держатели документа:
[Bogorodskaya, A. V.
Ponomareva, T. V.
Shapchenkova, O. A.
Shishikin, A. S.] Russian Acad Sci, Sukachev Inst Forestry, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Bogorodskaya, A.V.; Ponomareva, T.V.; Shapchenkova, O.A.; Shishikin, A.S.

    Epiphytic lichen growth abnormalities and element concentrations as early indicators of forest decline
[Text] / T. . Otnyukova // Environ. Pollut. - 2007. - Vol. 146: 5th Symposium of the International-Association-for-Lichenology (AUG 16-21, 2004, Tartu, ESTONIA), Is. 2. - P359-365, DOI 10.1016/j.envpol.2006.03.043. - Cited References: 48 . - 7. - ISSN 0269-7491
РУБ Environmental Sciences

Аннотация: Thallus morphology and element concentrations (S, Al, Fe, Sr, Mn, Ni, Zn, Cu, Pb, As, F, and Cl) were compared in samples of the fruticose lichen genus Usnea at two heights of the Abies sibirica canopy in the East Sayan Mountains (Krasnoyarsk District, Russia) sampled from three stations at 15, 25 and 35 km from Krasnoyark. Usnea species with an abnormal morphology dominated on branches in the upper canopy, 15-22 m above ground level, and normal thalli on lower tree branches, 2-5 m above ground. Abnormal thalli at the tree-top level contained higher Al, Fe, Zn, F, Sr and Pb concentrations compared with normal thalli growing below, confirming a dust impact. No such clear trend was observed between sampling stations. Crown canopy architecture, surface microtopography and the balance between the processes of deposition and the movement and loss of particles play a major role in particle interception and in pollutant delivery to Usnea. (c) 2006 Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, VK Sukachevs Inst Forest Res, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Otnyukova, T...

    Seasonal and spatial variability of elemental concentrations in boreal forest larch foliage of Central Siberia on continuous permafrost
[Text] / J. . Viers [et al.] // Biogeochemistry. - 2013. - Vol. 113, Is. 01.03.2013. - P435-449, DOI 10.1007/s10533-012-9770-8. - Cited References: 72. - We would like to thank the Ministere de l'Educational Nationale et de la Recherche, le Ministere des Affaires Etrabngers et l'INSU/CNRS (through the EC2CO program) of France for supporting this work. . - 15. - ISSN 0168-2563
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: We measured the seasonal dynamics of major and trace elements concentrations in foliage of larch, main conifer species of Siberia, and we analyzed cryogenic soils collected in typical permafrost-dominated habitats in the Central Siberia. This region offers a unique opportunity to study element fractionation between the soil and the plant because of (i) the homogeneous geological substratum, (ii) the monospecific stands (Larix gmelinii) and (iii) the contrasted habitats (North-facing slope, South-facing slope, and Sphagnum peatbog) in terms of soil temperature, moisture, thickness of the active layer, tree biomass and rooting depth. The variation of these parameters from one habitat to the other allowed us to test the effects of these parameters on the element concentration in larch foliage considered with high seasonal resolution. Statistical treatment of data on larch needles collected 4 times in 3 locations during entire growing season (June-September) demonstrated that : (1) there is a high similarity of foliar chemical composition of larch trees in various habitats suggesting intrinsically similar requirements of larch tree growth for nutrients, (2) the variation of elemental concentrations in larch needles is controlled by the period (within the growing season) and not by the geographical location (South-facing slope, North-facing slope or bog zone) and (3) there are three groups of elements according to their patterns of elements concentration in needles over the growing season from June to September can be identified: (1): nutrient elements [P, Cu, Rb, K, B, Na, Zn, Ni and Cd] showing a decrease of concentration from June to September similar to the behaviour of major nutrients such as N, P and K; (2): accumulating elements [Ca, Mg, Mo, Co, Sr, Mn, Pb and Cr] showing an increase of concentration from June-July to September; (3): indifferent elements [Al, Zr, Fe, Ba, Ti, REEs (Pr, Nd, Ce, La, Gd, Er, Dy, Tb, Lu, Yb, Tm, Sm, Ho, Eu), Y, Th and U] showing a decrease of concentration from June to July and then an increase of concentration to September. A number of micronutrients (e.g., Cu, Zn) demonstrate significant resorption at the end of growing season suggesting possible limitation by these elements. Although the intrinsic requirement seems to be similar among habitats, the total amount of element stored within the different habitats is drastically different due to the differences in standing tree biomass. The partitioning coefficients between soil and larch appear to be among the lowest compared to other environments with variable plants, soils and climates. Applying the "space for time" substitution scenario, it follows that under ongoing climate warming there will be an increase of the element stock following enhanced above-ground biomass accumulation, even considering zero modification of element ratios and their relative mobility. In this sense, the habitats like south-facing slopes can serve as resultant of climate warming effect on element cycling in larch ecosystems for the larger territory of Central Siberia.

Полный текст,
WOS,
Scopus

Держатели документа:
[Viers, J.
Pokrovsky, O. S.
Auda, Y.
Beaulieu, E.
Zouiten, C.
Oliva, P.
Dupre, B.] Univ Toulouse 3, CNRS, IRD, GET OMP, F-31400 Toulouse, France
[Prokushkin, A. S.
Kirdyanov, A. V.] Sukachev Inst Forestry SB RAS, Krasnoyarsk 660036, Russia
[Pokrovsky, O. S.] UroRAS, Inst Ecol Problems North, Arkhangelsk, Russia

Доп.точки доступа:
Viers, J.; Prokushkin, Anatoly S.; Прокушкин, Анатолий Станиславович; Pokrovsky, O.S.; Auda, Y.; Kirdyanov, Alexander V.; Кирдянов, Александр Викторович; Beaulieu, E.; Zouiten, C.; Oliva, P.; Dupre, B.; Ministere de l'Educational Nationale et de la Recherche; le Ministere des Affaires Etrabngers; l'INSU/CNRS of France

    De novo sequencing, assembly and functional annotation of Armillaria borealis genome
/ V. S. Akulova, V. V. Sharov, A. I. Aksyonova [et al.] // BMC Genomics. - 2020. - Vol. 21. - Ст. 534, DOI 10.1186/s12864-020-06964-6. - Cited References:48. - This work including the study and collection, analysis and interpretation of data, and writing the manuscript was supported by research grant. 14.Y26.31.0004 from the Government of the Russian Federation with partial funding from the Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences (grants No 0287-2019-0002, No 0356-2016-0704, and No 0356-2019-0024). The funding agencies played no role in the design of the study and collection material, analysis and interpretation of data, and in writing the manuscript. Publication cost have been funded by the Open Access Publication Funds of the University of Gottingen. . - ISSN 1471-2164
РУБ Biotechnology & Applied Microbiology + Genetics & Heredity

Аннотация: Background: Massive forest decline has been observed almost everywhere as a result of negative anthropogenic and climatic effects, which can interact with pests, fungi and other phytopathogens and aggravate their effects. Climatic changes can weaken trees and make fungi, such as Armillaria more destructive. Armillaria borealis (Marxm. & Korhonen) is a fungus from the Physalacriaceae family (Basidiomycota) widely distributed in Eurasia, including Siberia and the Far East. Species from this genus cause the root white rot disease that weakens and often kills woody plants. However, little is known about ecological behavior and genetics of A. borealis. According to field research data, A. borealis is less pathogenic than A. ostoyae, and its aggressive behavior is quite rare. Mainly A. borealis behaves as a secondary pathogen killing trees already weakened by other factors. However, changing environment might cause unpredictable effects in fungus behavior. ResultsThe de novo genome assembly and annotation were performed for the A. borealis species for the first time and presented in this study. The A. borealis genome assembly contained similar to 68 Mbp and was comparable with similar to 60 and similar to 79.5 Mbp for the A. ostoyae and A. mellea genomes, respectively. The N50 for contigs equaled 50,544bp. Functional annotation analysis revealed 21,969 protein coding genes and provided data for further comparative analysis. Repetitive sequences were also identified. The main focus for further study and comparative analysis will be on the enzymes and regulatory factors associated with pathogenicity. ConclusionsPathogenic fungi such as Armillaria are currently one of the main problems in forest conservation. A comprehensive study of these species and their pathogenicity is of great importance and needs good genomic resources. The assembled genome of A. borealis presented in this study is of sufficiently good quality for further detailed comparative study on the composition of enzymes in other Armillaria species. There is also a fundamental problem with the identification and classification of species of the Armillaria genus, where the study of repetitive sequences in the genomes of basidiomycetes and their comparative analysis will help us identify more accurately taxonomy of these species and reveal their evolutionary relationships.

WOS

Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Lab Forest Genom, Genome Res & Educ Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Siberian Branch, Lab Genom Res & Biotechnol,Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Space & Informat Technol, Dept High Performance Comp, Krasnoyarsk 660074, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Lab Forest Genet & Select, Krasnoyarsk 660036, Russia.
Natl Res Tech Univ, Dept Informat, Irkutsk 664074, Russia.
Russian Acad Sci, Siberian Branch, Limnol Inst, Irkutsk 664033, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Lab Reforestat Mycol & Plant Pathol, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Dept Chem Technol Wood & Biotechnol, Krasnoyarsk 660049, Russia.
Georg August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, D-37077 Gottingen, Germany.
George August Univ Gottingen, Ctr Integrated Breeding Res, D-37075 Gottingen, Germany.
Russian Acad Sci, NI Vavilov Inst Gen Genet, Lab Populat Genet, Moscow 119333, Russia.
Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA.

Доп.точки доступа:
Akulova, Vasilina S.; Sharov, Vadim V.; Aksyonova, Anastasiya I.; Putintseva, Yuliya A.; Oreshkova, Natalya V.; Feranchuk, Sergey I.; Kuzmin, Dmitry A.; Pavlov, Igor N.; Litovka, Yulia A.; Krutovsky, Konstantin V.; Krutovsky, Konstantin; Government of the Russian Federation [14.Y26.31.0004]; Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences [0287-2019-0002, 0356-2016-0704, 0356-2019-0024]; University of Gottingen