Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 2

    Development of Nuclear Microsatellite Markers with Long (Tri-, Tetra-, Penta-, and Hexanucleotide) Motifs for Three Larch Species Based on the de novo Whole Genome Sequencing of Siberian Larch (Larix sibirica Ledeb.)
/ N. V. Oreshkova [et al.] // Russ. J. Genet. - 2019. - Vol. 55, Is. 4. - P444-450, DOI 10.1134/S1022795419040094. - Cited References:22. - The study was done as a part of the project "Genomics of the Key Boreal Forest Conifer Species and Their Major Phytopathogens in the Russian Federation" funded by the Government of the Russian Federation (grant no. 14.Y26.31.0004). . - ISSN 1022-7954. - ISSN 1608-3369
РУБ Genetics & Heredity
Рубрики:
POPULATION-STRUCTURE
   LOCI

   IDENTIFICATION

   ORIGIN

Кл.слова (ненормированные):
conifers -- genetic diversity -- heterozygosity -- Larix -- larch -- microsatellite markers -- SSR -- whole genome sequencing

Аннотация: Siberian larch (Larix sibirica Ledeb.) is one of the major boreal tree species in Eurasia and has a considerable economic and ecological value. Despite that importance, the development and use of microsatellite markers in this species remain limited. Microsatellite markers are considered to be a valuable tool for estimation of population diversity and structure. Availability of a draft reference assembly of the Siberian larch genome allowed us to identify 1015 microsatellite loci or simple sequence repeats (SSRs) with tri-, tetra-, penta-, and hexanucleotide motifs. For 60 of them PCR primers were designed and tested for amplification in L. sibirica and for their within-genus transferability to L. gmelinii (Rupr.) Rupr. and L. cajanderi Mayr. Here, we present a set of 14 reliable and polymorphic new nuclear SSR markers that can be used for further population genetic studies, breeding programs, and timber origin identification.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Siberian Fed Univ, Genome Res & Educ Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Georg August Univ Gottingen, D-37077 Gottingen, Germany.
Russian Acad Sci, Vavilov Inst Gen Genet, Moscow 119991, Russia.
Texas A&M Univ, College Stn, TX 77843 USA.

Доп.точки доступа:
Oreshkova, N. V.; Bondar, E. I.; Putintseva, Yu. A.; Sharov, V. V.; Kuzmin, D. A.; Krutovsky, K. V.; Krutovsky, Konstantin; Government of the Russian Federation [14.Y26.31.0004]

    Genetic structure of a widespread alpine shrub Rhododendron aureum (Ericaceae) across East Asia
/ M. A. Polezhaeva, N. A. Tikhonova, E. A. Marchuk [et al.] // J. Plant Res. - 2021, DOI 10.1007/s10265-020-01241-9. - Cited References:77. - We are grateful to A. Berkutenko, D. Krivenko, A. Shirayev, L. Andriyanova, M. Khoreva, P. Krestov, T. Polyakova, A. Efimova, N. Molokova for the help with material collections. We thank V. Mikryukov for the help with MAXENT figures presentation. We also thank two anonymous reviewers for helpful comments on the manuscript. The collection of samples was supported by the State Contract of the Institute of Plant and Animal Ecology, UB RAS. The laboratory treatments were supported by the Russian Science Foundation for Basic Research (Project No. 20-04-00417 A). . - Article in press. - ISSN 0918-9440. - ISSN 1618-0860
РУБ Plant Sciences
Рубрики:
POPULATION-STRUCTURE
   COMPARATIVE PHYLOGEOGRAPHY

   DEMOGRAPHIC HISTORY

Кл.слова (ненормированные):
Alpine plants -- Biogeography -- Microsatellites -- Refugium -- Rhododendron -- Siberia

Аннотация: The vast territory of East Asia, including southwestern Beringia, is considered to have been almost ice free during the Pleistocene. Cold-resistant flora may have persisted in this region expanding or contracting its range during the climate cooling. Only a few plant genera have been studied with a sampling area across their entire geographic range in East Asia; therefore, the understanding of the biogeographic history of alpine flora in this region remains limited. In the present study, genetic variation and population structure in 21 populations of the alpine shrub Rhododendron aureum across its range in East Asia were assessed using 18 microsatellite loci. Phylogenetic analyses revealed three main genetic groups: Siberia, Northeast, and North Pacific. According to the geographical pattern of genetic diversity, the North Pacific group includes populations from Kamchatka, south of Russian Far East, and territories close to central Japan. This group is the most diverse and likely diverged earlier than the Siberia and Northeast groups. Ecological niche modeling predicts range expansion of this species during the period of cooling and, together with demographic history, suggests that the divergence between the three main genetic groups predated the Last Glacial Maximum. Similar to other cold-resistant species such as Larix sibirica and Juniperus communis, the pattern of genetic diversity of R. aureum supports the survival of the species at high latitudes during the Pleistocene with limited contribution of the southern populations to expansion of the species range to the Northeast region and Siberia.

WOS

Держатели документа:
Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, Ekaterinburg, Russia.
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk, Russia.
Russian Acad Sci, Bot Garden Inst, Far Eastern Branch, Vladivostok, Russia.
Russian Acad Sci, Inst Biol Problems North, Far Eastern Branch, Magadan, Russia.
Russian Acad Sci, Inst Gen & Expt Biol, Siberian Branch, Ulan Ude, Russia.

Доп.точки доступа:
Polezhaeva, Maria A.; Tikhonova, Natalya A.; Marchuk, Elena A.; Modorov, Makar, V; Ranyuk, Maryana N.; Polezhaev, Alexey N.; Badmayeva, Natalya K.; Semerikov, Vladimir L.; State Contract of the Institute of Plant and Animal Ecology, UB RAS; Russian Science Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [20-04-00417 A]