Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 7

    Features of the biomass distribution of epiphytic lichens on scotch pine (Lower Angara Region)
/ N. M. Kovaleva, G. A. Ivanova // Contemp. Probl. Ecol. - 2012. - Vol. 5, Is. 3. - P319-322, DOI 10.1134/S1995425512030080. - Cited References: 27. - This work was supported by the International Science and Technology Center (project no. 3695) and the Lavrent'evskii competition (project no. 6.20). . - 4. - ISSN 1995-4255
РУБ Ecology
Рубрики:
FORESTS
   WASHINGTON

   PRECIPITATION

Кл.слова (ненормированные):
Lower Angara region -- Scotch pine -- biomass -- epiphytic lichens

Аннотация: The biomass of epiphytic lichens growing on Scots pine varies from 130 to 1090 g and is composed mainly of lichens from three genera: Bryoria (45%), Hypogymnia (34%), and Evernia (12%). The majority of lichens (66%) grow on tree branches (96%) in the zone of maximum development, located at a height of 9-13.5 m. The lichen biomass on tree trunks is insignificant (4%) and located mainly at their bottom part (70%).

Полный текст,
WOS,
Scopus

Держатели документа:
[Kovaleva, N. M.
Ivanova, G. A.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kovaleva, N.M.; Ivanova, G.A.

    The application of tree-rings and stable isotopes for reconstructions of climate conditions in the Russian Altai
[Text] / O. V. Sidorova [et al.] // Clim. Change. - 2013. - Vol. 120, Is. 01.02.2013. - P153-167, DOI 10.1007/s10584-013-0805-5. - Cited References: 32. - The work was supported by Marie Curie IIF (EU-ISOTREC 235122) awarded to Olga Sidorova, SNSF 200021_121838/1, and SNSF - SCOPES Iz73z0-128035/1, MK-1675.2011.6, Russian Scientific School 5327.2012.4 and RFBR grant 13-05-00620. Neil J. Loader thanks the UK NERC (NE/B501504) and C3W for support. We thank Eugene Vaganov for the suggestions in the manuscript and five reviewers for their constructive and helpful comments. . - 15. - ISSN 0165-0009
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: We present new tree-ring width, delta C-13, and delta O-18 chronologies from the Koksu site (49A degrees N, 86A degrees E, 2,200 m asl), situated in the Russian Altai. A strong temperature signal is recorded in the tree-ring width (June-July) and stable isotope (July-August) chronologies, a July precipitation signal captured by the stable isotope data. To investigate the nature of common climatic patterns, our new chronologies are compared with previously published tree-ring and stable isotope data from other sites in the Altai region. The temperature signal preserved in the conifer trees is strongly expressed at local and regional scales for all studied sites, resulting in even stronger temperature and precipitation signals in combined average chronologies compared to separate chronologies. This enables the reconstruction of June-July and July-August temperatures for the last 200 years using tree-ring and stable carbon isotopes. A July precipitation reconstruction based on oxygen isotopic variability recorded in tree-rings can potentially improve the understanding of hydrological changes and the occurrence of extreme events in the Russian Altai.

Полный текст,
WOS,
Scopus

Держатели документа:
[Sidorova, O. V.
Siegwolf, R. T. W.
Saurer, M.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[Myglan, V. S.
Shishov, V. V.] Siberian Fed Univ, Krasnoyarsk 660049, Russia
[Ovchinnikov, D. V.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Helle, G.] German Ctr GeoSci GFZ, Helmholz Ctr Potsdam, D-14473 Potsdam, Germany
[Loader, N. J.] Swansea Univ, Dept Geog, Swansea SA2 8PP, W Glam, Wales

Доп.точки доступа:
Sidorova, O.V.; Siegwolf, RTW; Myglan, V.S.; Ovchinnikov, D.V.; Shishov, V.V.; Helle, G...; Loader, N.J.; Saurer, M...; Marie Curie IIF [EU-ISOTREC 235122]; SNSF [200021_121838/1]; SNSF - SCOPES [Iz73z0-128035/1, MK-1675.2011.6]; Russian Scientific School [5327.2012.4]; RFBR [13-05-00620]; UK NERC [NE/B501504]; C3W

    Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia
[Text] / M. . Saurer [et al.] // Geophys. Res. Lett. - 2002. - Vol. 29, Is. 15. - Ст. 1296, DOI 10.1029/2001GL013739. - Cited References: 23 . - 4. - ISSN 0094-8276
РУБ Geosciences, Multidisciplinary

Аннотация: [1] The oxygen isotope ratio of ice cores and sea-sediments is an extremely useful source of information on long-term climatic changes. A similar approach has been applied to the oxygen isotope ratio of tree rings to enable a pattern-based reconstruction of the isotope variations on the continents. We present an oxygen isotope map for northern Eurasia spanning from Norway to Siberia, that reflects the isotope distribution in the late 19th century, and compare it with an equivalent map for the present-day situation. The average isotope values of 130 trees show a large east-to-west gradient and are highly correlated with the isotope distribution of precipitation. Surprisingly, the (18)O/(16)O ratio of the wood has been decreasing in the interior of the continent since the late 19th century, in contrast to the strong temperature increase recorded by meteorological data. From this isotope trend over time a change in the seasonality of precipitation can be inferred.

WOS,
Полный текст,
Scopus

Держатели документа:
Paul Scherrer Inst, CH-5232 Villigen, Switzerland
Swiss Fed Res Inst WSL, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Ekaterinburg 620219, Russia

Доп.точки доступа:
Saurer, M...; Schweingruber, F...; Vaganov, E.A.; Shiyatov, S.G.; Siegwolf, R...

    THE NORTHERN EURASIA EARTH SCIENCE PARTNERSHIP An Example of Science Applied to Societal Needs
[Text] / P. Y. Groisman [et al.] // Bull. Amer. Meteorol. Soc. - 2009. - Vol. 90, Is. 5. - P671-+, DOI 10.1175/2008BAMS2556.1. - Cited References: 78 . - 19. - ISSN 0003-0007
РУБ Meteorology & Atmospheric Sciences

Аннотация: Northern Eurasia, the largest land-mass in the northern extratropics, accounts for similar to 20% of the global land area. However, little is known about how the biogeochemical cycles, energy and water cycles, and human activities specific to this carbon-rich, cold region interact with global climate. A major concern is that changes in the distribution of land-based life, as well as its interactions with the environment, may lead to a self-reinforcing cycle of accelerated regional and global warming. With this as its motivation, the Northern Eurasian Earth Science Partnership Initiative (NEESPI) was formed in 2004 to better understand and quantify feedbacks between northern Eurasian and global climates. The first group of NEESPI projects has mostly focused on assembling regional databases, organizing improved environmental monitoring of the region, and studying individual environmental processes. That was a starting point to addressing emerging challenges in the region related to rapidly and simultaneously changing climate, environmental, and societal systems. More recently, the NEESPI research focus has been moving toward integrative studies, including the development of modeling capabilities to project the future state of climate, environment, and societies in the NEESPI domain. This effort will require a high level of integration of observation programs, process studies, and modeling across disciplines.

WOS,
Scopus

Держатели документа:
[Groisman, Pavel Ya.] NOAA, UCAR, Natl Climat Data Ctr, Asheville, NC 28801 USA
[Clark, Elizabeth A.
Lettenmaier, Dennis P.] Univ Washington, Seattle, WA 98195 USA
[Kattsov, Vladimir M.] Voeikov Main Geophys Observ, St Petersburg, Russia
[Sokolik, Irina N.] Georgia Inst Technol, Atlanta, GA 30332 USA
[Aizen, Vladimir B.] Univ Idaho, Moscow, ID 83843 USA
[Cartus, Oliver
Schmullius, Christiane C.] Univ Jena, Jena, Germany
[Chen, Jiquan] Univ Toledo, Toledo, OH 43606 USA
[Conard, Susan] US Forest Serv, USDA, Arlington, VA USA
[Katzenberger, John] Aspen Global Change Inst, Aspen, CO USA
[Krankina, Olga] Oregon State Univ, Corvallis, OR 97331 USA
[Kukkonen, Jaakko
Sofiev, Mikhail A.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[Machida, Toshinobu
Maksyutov, Shamil] Natl Inst Environm Sci, Tsukuba, Ibaraki, Japan
[Ojima, Dennis] H John Heinz III Ctr Sci Econ & Environm, Washington, DC USA
[Qi, Jiaguo] Michigan State Univ, E Lansing, MI 48824 USA
[Romanovsky, Vladimir E.
Walker, Donald] Univ Alaska, Fairbanks, AK 99701 USA
[Santoro, Maurizio] Gamma Remote Sensing, Gumlingen, Switzerland
[Shiklomanov, Alexander I.
Voeroesmarty, Charles] Univ New Hampshire, Durham, NH 03824 USA
[Shimoyama, Kou] Hokkaido Univ, Sapporo, Hokkaido, Japan
[Shugart, Herman H.
Shuman, Jacquelyn K.] Univ Virginia, Charlottesville, VA USA
[Sukhinin, Anatoly I.] Russian Acad Sci, Forest Inst, Siberian Branch, Krasnoyarsk, Russia
[Wood, Eric F.] Princeton Univ, Princeton, NJ 08544 USA

Доп.точки доступа:
Groisman, P.Y.; Clark, E.A.; Kattsov, V.M.; Lettenmaier, D.P.; Sokolik, I.N.; Aizen, V.B.; Cartus, O...; Chen, J.Q.; Conard, S...; Katzenberger, J...; Krankina, O...; Kukkonen, J...; Machida, T...; Maksyutov, S...; Ojima, D...; Qi, J.G.; Romanovsky, V.E.; Santoro, M...; Schmullius, C.C.; Shiklomanov, A.I.; Shimoyama, K...; Shugart, H.H.; Shuman, J.K.; Sofiev, M.A.; Sukhinin, A.I.; Vorosmarty, C...; Walker, D...; Wood, E.F.

    Response of evapotranspiration and water availability to the changing climate in Northern Eurasia
[Text] / Y. L. Liu [et al.] // Clim. Change. - 2014. - Vol. 126, Is. 03.04.2014. - P413-427, DOI 10.1007/s10584-014-1234-9. - Cited References: 53. - This research is supported by the NASA Land Use and Land Cover Change program (NASA-NNX09AI26G, NN-H-04-Z-YS-005-N, and NNX09AM55G), the Department of Energy (DE-FG02-08ER64599), the National Science Foundation (NSF-1028291 and NSF- 0919331), the NSF Carbon and Water in the Earth Program (NSF-0630319), and the Dynamics of Coupled Natural and Human Systems (CNH) Program of the NSF (#1313761). We also acknowledge the Global Runoff Data Centre for provision of the gauge station data. Runoff data in Peterson et al. (2002) were obtained from the R-ArcticNet database. A special acknowledgment is made here to Prof. Eric Wood for his generous provision of the ET datasets of Vinukollu et al. (2011), and to Dr. Brigitte Mueller and Dr. Martin Hirsci for the provision of the LandFlux-EVAL dataset of Mueller et al. (2013). Diego Miralles acknowledges the support by the European Space Agency WACMOS-ET project (4000106711/12/I-NB). . - ISSN 0165-0009. - ISSN 1573-1480
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Northern Eurasian ecosystems play an important role in the global climate system. Northern Eurasia (NE) has experienced dramatic climate changes during the last half of the 20th century and to present. To date, how evapotranspiration (ET) and water availability (P-ET, P: precipitation) had changed in response to the climatic change in this region has not been well evaluated. This study uses an improved version of the Terrestrial Ecosystem Model (TEM) that explicitly considers ET from uplands, wetlands, water bodies and snow cover to examine temporal and spatial variations in ET, water availability and river discharge in NE for the period 1948-2009. The average ET over NE increased during the study period at a rate of 0.13 mm year(-1) year(-1). Over this time, water availability augmented in the western part of the region, but decreased in the eastern part. The consideration of snow sublimation substantially improved the ET estimates and highlighted the importance of snow in the hydrometeorology of NE. We also find that the modified TEM estimates of water availability in NE watersheds are in good agreement with corresponding measurements of historical river discharge before 1970. However, a systematic underestimation of river discharge occurs after 1970 indicates that other water sources or dynamics not considered by the model (e.g., melting glaciers, permafrost thawing and fires) may also be important for the hydrology of the region.

WOS,
Полный текст,
Scopus

Держатели документа:
[Liu, Yaling
Zhuang, Qianlai
He, Yujie] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[Zhuang, Qianlai] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA
[Pan, Zhihua] China Agr Univ, Coll Resources & Environm Sci, Beijing 100094, Peoples R China
[Miralles, Diego] Univ Ghent, Lab Hydrol & Water Management, B-9000 Ghent, Belgium
[Miralles, Diego] Univ Bristol, Sch Geog Sci, Bristol, Avon, England
[Tchebakova, Nadja] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Kicklighter, David
Melillo, Jerry] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA
[Chen, Jiquan] Michigan State Univ, CGCEO Geog, E Lansing, MI 48824 USA
[Sirin, Andrey] Acad Sci, Lab Peatland Forestry & Ameliorat, Inst Forest Sci, Uspenskoye, Moscow Oblast, Russia
[Zhou, Guangsheng] Chinese Acad Sci, Inst Bot, Beijing, Peoples R China
ИЛ СО РАН

Доп.точки доступа:
Liu, Y.L.; Zhuang, Q.L.; Pan, Z.H.; Miralles, D...; Tchebakova, N...; Kicklighter, D...; Chen, J.Q.; Sirin, A...; He, Y.J.; Zhou, G.S.; Melillo, J...; NASA Land Use and Land Cover Change program [NASA-NNX09AI26G, NN-H-04-Z-YS-005-N, NNX09AM55G]; Department of Energy [DE-FG02-08ER64599]; National Science Foundation [NSF-1028291, NSF- 0919331]; NSF Carbon and Water in the Earth Program [NSF-0630319]; Dynamics of Coupled Natural and Human Systems (CNH) Program of the NSF [1313761]; European Space Agency WACMOS-ET project [4000106711/12/I-NB]

    Application of eco-physiological models to the climatic interpretation of delta C-13 and delta O-18 measured in Siberian larch tree-rings
/ O. V. Churakova [et al.] // Dendrochronologia. - 2016. - Vol. 39: Workshop on Current Status and the Potential of Tree-Ring Research in (JAN 20-21, 2015, Krasnoyarsk, RUSSIA). - P51-59, DOI 10.1016/j.dendro.2015.12.008. - Cited References:50 . - ISSN 1125-7865. - ISSN 1612-0051
РУБ Plant Sciences + Forestry + Geography, Physical

Аннотация: Tree-ring width and stable isotopic composition are widely used for the reconstruction of environmental conditions. Eco-physiological models simulating delta C-13 and delta O-18 provide tools to constrain the interpretation of measured tree-ring variations and their relationships to environmental variables. Here, we apply biochemical models of photosynthesis and a model of stomatal conductance to simulate the intra-annual dynamics of delta(13) C values in photo assimilates and tree-rings. We use these models to investigate the physiological responses of larch trees growing on permafrost to variability in precipitation and permafrost depth associated with regional temperature and precipitation changes. Tree-ring width, delta C-13 and delta O-18 in wood and cellulose were measured in larch (Larix cajanderi Mayr.) samples from northeastern Yakutia (69 degrees N, 148 degrees E) for the period from 1945 to 2004 and used for comparisons with modeled delta C-13 and delta O-18 data. Mechanistic models that quantify physical and biochemical fractionation processes leading to oxygen isotope variation in organic matter are used to identify source water for trees growing on permafrost in Siberia. These models allowed us to investigate the influence of a variety of climatic factors on Siberian forest ecosystem water relations that impact isotope fractionation. Based on delta C-13 and delta O-18 in tree wood and cellulose measurements as well as outputs from different eco-physiological models, we assume that larch trees from northeastern Yakutia can have limited access to the additional thawed permafrost water during dry summer periods. (C) 2015 Elsevier GmbH. All rights reserved.

WOS,
Смотреть статью

Держатели документа:
Univ Bern, Inst Geol Sci, Dendrolab Ch, CH-3012 Bern, Switzerland.
Swiss Fed Inst Technol, Dept Environm Sci, CH-8092 Zurich, Switzerland.
VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
INRA, UMR ISPA 1391, F-33140 Villenave Dornon, France.
CEA Saclay, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France.
Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
Univ Bern, Inst Phys, Climate & Environm Phys, CH-3012 Bern, Switzerland.
Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland.
Southern Oregon Univ, Dept Biol, Ashland, OR 97520 USA.

Доп.точки доступа:
Churakova, O. V.; Shashkin, Aleksandr V.; Siegwolf, Rolf T. W.; Spahni, Renato; Launois, Thomas; Saurer, Matthias; Bryukhanova, Marina V.; Benkova, Anna V.; Kuptsova, Anna V.; Peylin, Philippe; Vaganov, Eugene A.; Masson-Delmotte, Valerie; Roden, John

    Hydroclimatic Controls on the Isotopic (delta(18) O, delta(2) H, d-excess) Traits of Pan-Arctic Summer Rainfall Events
/ M. Mellat, H. Bailey, K. R. Mustonen [et al.] // Front. Earth Sci. - 2021. - Vol. 9. - Ст. 651731, DOI 10.3389/feart.2021.651731. - Cited References:64. - The Pan-Arctic Precipitation Isotope Network (PAPIN) received funding from the European Union's Horizon 2020 Project INTERACT, under Grant Agreement No.730938 (JW PI). An Academy of Finland Grant (316014-JW PI). Support was also provided by a University of the Arctic Research Chairship to JW that funded isotope analyses and provided postdoctoral support for HB and K-RM and postgraduate research support for MM. A Russian Science Foundation Grant (No. 18-11-00024) to KG funded isotope analyses. SK was thankful to Russian Science Foundation (No. 20-67-46018). Russian Foundation for Basic Research (BFBR) supported isotopic analyses conducted by AP (#18-05-60203-Arktika). . - ISSN 2296-6463
РУБ Geosciences, Multidisciplinary

Аннотация: Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (delta O-18, delta H-2, d-excess) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 (n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where delta H-2 = 7.6.delta O-18-1.8 (r(2) = 0.96, p < 0.01). Mean amount-weighted delta O-18, delta H-2, and d-excess values were -12.3, -93.5, and 4.9 parts per thousand, respectively, with the lowest summer mean delta O-18 value observed in northwest Greenland (-19.9 parts per thousand) and the highest in Iceland (-7.3 parts per thousand). Southern Alaska recorded the lowest mean d-excess (-8.2%) and northern Russia the highest (9.9 parts per thousand). We identify a range of delta O-18-temperature coefficients from 0.31 parts per thousand/degrees C (Alaska) to 0.93 parts per thousand/degrees C (Russia). The steepest regression slopes (>0.75 parts per thousand/degrees C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high delta O-18 values. Yet 32% of precipitation events, characterized by lower delta O-18 and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving these processes across broader spatial-temporal scales is an ongoing research priority, and will be key to quantifying the past, present, and future feedbacks of an amplified Arctic water cycle on the global climate system.

WOS

Держатели документа:
Univ Oulu, Ecol & Genet Res Unit, Oulu, Finland.
Univ Oulu, Water Energy & Environm Engn Res Unit, Oulu, Finland.
Univ Alaska Anchorage, Dept Geol Sci, Anchorage, AK USA.
Ural Fed Univ, Inst Nat Sci, Ekaterinburg, Russia.
Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99701 USA.
UrB Russian Acad Sci, N Laverov Fed Ctr Integrated Arctic Res, Arkhangelsk, Russia.
Fram Ctr, Norwegian Polar Inst, Tromso, Norway.
Ny Alesund Res Stn, Tromso, Norway.
Univ Calgary, Dept Geog, Calgary, AB, Canada.
Yugra State Univ, UNESCO Chair Environm Dynam & Global Climate Chan, Environm Dinam & Global Climate Change Res Ctr, Khanty Mansiysk, Russia.
Finnish Forest Adm, Metsahallitus, Muonio, Finland.
Tomsk State Univ, BIO GEO CLIM Lab, Tomsk, Russia.
Tuvan State Univ, Kyzyl, Russia.
Univ Copenhagen, Arctic Stn, Greenland, Copenhagen, Greenland.
Greenland Inst Nat Resources, Dept Environm & Mineral Resources, Nuuk, Greenland.
Univ Oulu, Oulanka Res Stn, Oulu, Finland.
Univ Toulouse, CNRS, Geosci Environm Toulouse, Toulouse, France.
Siberian Fed Univ, Fac Biol, Krasnoyarsk, Russia.
SB RAS, VN Sukachev Inst Forest, Krasnoyarsk, Akademgorodok, Russia.
Univ Turku, Biodivers Unit, Kevo Subarct Res Inst, Turku, Finland.
Sudurnes Sci & Learning Ctr, Sandgerdi, Iceland.
Univ Alaska Anchorage, Dept Biol Sci, Anchorage, AK USA.
Univ Arctic UArctic, Rovaniemi, Finland.

Доп.точки доступа:
Mellat, Moein; Bailey, Hannah; Mustonen, Kaisa-Riikka; Marttila, Hannu; Klein, Eric S.; Gribanov, Konstantin; Bret-Harte, M. Syndonia; Chupakov, Artem V.; Divine, Dmitry V.; Else, Brent; Filippov, Ilya; Hyoky, Valtteri; Jones, Samantha; Kirpotin, Sergey N.; Kroon, Aart; Markussen, Helge Tore; Nielsen, Martin; Olsen, Maia; Paavola, Riku; Pokrovsky, Oleg S.; Prokushkin, Anatoly; Rasch, Morten; Raundrup, Katrine; Suominen, Otso; Syvanpera, Ilkka; Vignisson, Solvi Runar; Zarov, Evgeny; Welker, Jeffrey M.; European Union's Horizon 2020 Project INTERACT [730938]; Academy of FinlandAcademy of FinlandEuropean Commission [316014]; University of the Arctic Research Chairship; Russian Science FoundationRussian Science Foundation (RSF) [18-11-00024, 20-67-46018]; Russian Foundation for Basic Research (BFBR) [18-05-60203-Arktika]