Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 9

    Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers
/ E. D. Schulze [et al.] // Biogeosciences. - 2012. - Vol. 9, Is. 4. - P1405-1421, DOI 10.5194/bg-9-1405-2012. - Cited References: 39. - We thank Annett Borner for her help with the artwork, and Dominik Hessenmoller for his help. We also thank Inge Schulze for all her support during the fieldwork. The data processing was supported by the Russian "Megagrant" 11.G34.31.0014 from 30 November 2010 to E. D. Schulze by the Russian Federation and the Siberian Federal University to support research projects by leading scientists at Russian Institutions of higher Education. . - 17. - ISSN 1726-4170
РУБ Ecology + Geosciences, Multidisciplinary

Аннотация: The relative role of fire and of climate in determining canopy species composition and aboveground carbon stocks were investigated. Measurements were made along a transect extending from the dark taiga zone of central Siberia, where Picea and Abies dominate the canopy, into the Larix zone of eastern Siberia. We test the hypotheses that the change in canopy species composition is based (1) on climate-driven performance only, (2) on fire only, or (3) on fire-performance interactions. We show that the evergreen conifers Picea obovata and Abies sibirica are the natural late-successional species both in central and eastern Siberia, provided there has been no fire for an extended period of time. There are no changes in performance of the observed species along the transect. Fire appears to be the main factor explaining the dominance of Larix and of soil carbon. Of lesser influence were longitude as a proxy for climate, local hydrology and active-layer thickness. We can only partially explain fire return frequency, which is not only related to climate and land cover, but also to human behavior. Stand-replacing fires decreased from 300 to 50 yrs between the Yenisei Ridge and the upper Tunguska. Repeated non-stand-replacing surface fires eliminated the regeneration of Abies and Picea. With every 100 yrs since the last fire, the percentage of Larix decreased by 20%. Biomass of stems of single trees did not show signs of age-related decline. Relative diameter increment was 0.41 +/- 0.20% at breast height and stem volume increased linearly over time with a rate of about 0.36 t C ha(-1) yr(-1) independent of age class and species. Stand biomass reached about 130 t C ha(-1)(equivalent to about 520 m(3) ha(-1)). Individual trees of Larix were older than 600 yrs. The maximum age and biomass seemed to be limited by fungal rot of heart wood. 60% of old Larix and Picea and 30% of Pinus sibirica trees were affected by stem rot. Implications for the future role of fire and of plant diseases are discussed.

WOS,
Scopus

Держатели документа:
[Schulze, E. -D.
Mollicone, D.
Ziegler, W.] Max Planck Inst Biogeochem, D-07701 Jena, Germany
[Wirth, C.] Univ Leipzig, Inst Biol, D-04103 Leipzig, Germany
[Mollicone, D.
Achard, F.] Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, Italy
[von Luepke, N.
Mund, M.] Univ Gottingen, Dept Ecoinformat Bioemetr & Forest Growth, D-37077 Gottingen, Germany
[Prokushkin, A.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Scherbina, S.] Centralno Sibirsky Nat Reserve, Bor, Russia

Доп.точки доступа:
Schulze, E.D.; Wirth, C...; Mollicone, D...; von Lupke, N...; Ziegler, W...; Achard, F...; Mund, M...; Prokushkin, A...; Scherbina, S...

    Eddy covariance CO2 flux above a Gmelin larch forest on continuous permafrost in Central Siberia during a growing season
[Text] / Y. . Nakai [et al.] // Theor. Appl. Climatol. - 2008. - Vol. 93, Is. 03.04.2013. - P133-147, DOI 10.1007/s00704-007-0337-x. - Cited References: 47. - We gratefully thank V. Borovikov and other colleagues of the Sukachev Institute of Forest and the Evenki Forest Management Agency in Tura for their support with logistics and instrumentation. We also thank T. Yorisaki, H. Tanaka, and the staff of "Climatec Inc.'' for system integration and instrumentation. We acknowledge Y. Ohtani, Y. Yasuda, and T. Watanabe for providing software resources. N. Saigusa encouraged us greatly. This research was supported by the "Global environment research fund S-1'', as "Integrated Study for Terrestrial Carbon Management of Asia in the 21th Century based on Scientific Advancements (FY2002-2006)''. . - 15. - ISSN 0177-798X
РУБ Meteorology & Atmospheric Sciences

Аннотация: Gmelin larch ( Larix gmelinii) forests are representative vegetation in the continuous permafrost region of Central Siberia. Information on the carbon budget is still limited for this Siberian larch taiga in comparison to boreal forests in other regions, while the larch forests are expected to play a key role in the global carbon balance due to their wide distribution over North-East Eurasia. The authors reported results of eddy covariance CO2 flux measurements at a mature Gmelin larch stand in Central Siberia, Russia (64 degrees 16'N, 100 degrees 12'E, 250m a.s.l.). The measurements were conducted during one growing season (June-early September in 2004). CO2 uptake was initiated in early June and increased sharply until late June, which was closely related to the phenology of the larch trees (i.e., bud-break and needle flush). Maximum half-hourly net CO2 uptake was similar to 6 mu mol m(-2) s(-1). Maximum daily net uptake of similar to 2 g C m(-2) day(-1) occurred at the end of June and in mid-July. Cumulative net uptake was 76-78 g C m(-2), indicating that the mature larch forest acted as a net sink for CO2 during the growing season (91 days). In comparison with other boreal forests, however, the magnitude of net CO2 uptake and night-time release of the forest, and cumulative net CO2 uptake were lower. We suggest that lower net ecosystem CO2 uptake of the study stand was primarily associated with low leaf area index.

Полный текст,
WOS,
Scopus

Держатели документа:
[Nakai, Y.] Forestry & Forest Prod Res Inst, Dept Meteorol Environm, Tsukuba, Ibaraki 3058687, Japan
[Kajimoto, T.] Forestry & Forest Prod Res Inst, Kyushu Res Ctr, Kumamoto, Japan
[Abaimov, A. P.
Zyryanova, O. A.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Yamamoto, S.] Okayama Univ, Okayama, Japan

Доп.точки доступа:
Nakai, Y...; Matsuura, Y...; Kajimoto, T...; Abaimov, A.P.; Абаимов Анатолий Платонович; Yamamoto, S...; Zyryanova, O.A.

    Forests and swamps of Siberia in the global carbon cycle
[Text] / E. A. Vaganova [et al.] // Contemp. Probl. Ecol. - 2008. - Vol. 1, Is. 2. - P168-182, DOI 10.1134/S1995425508020021. - Cited References: 67 . - 15. - ISSN 1995-4255
РУБ Ecology

Аннотация: Results of measurements and calculations of carbon budget parameters of forests and swamps of Siberia are reported. The zonal variability of reserves (and an increment in reserves) of carbon in forest and swamp ecosystems is characterized, carbon dioxide fluxes are measured directly by means of microeddy pulsations, and an uncertainty brought into the calculation of carbon budget parameters by forest fires is estimated.

Полный текст,
WOS

Держатели документа:
[Vaganova, E. A.
Vedrova, E. F.
Verkhovets, S. V.
Efremov, S. P.
Efremova, T. T.
Onuchin, A. A.
Sukhinin, A. I.
Shibistova, O. B.] RAS, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Kruglov, V. B.] Krasnoyarsk State Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Vaganov, E.A.; Vedrova, E.F.; Verkhovets, S.V.; Efremov, S.P.; Efremova, T.T.; Kruglov, V.B.; Onuchin, A.A.; Sukhinin, A.I.; Shibistova, O.B.

    Root system development of Larix gmelinii trees affected by micro-scale conditions of permafrost soils in central Siberia
[Text] / T. . Kajimoto [et al.] // Plant Soil. - 2003. - Vol. 255, Is. 1. - P281-292, DOI 10.1023/A:1026175718177. - Cited References: 38 . - 12. - ISSN 0032-079X
РУБ Agronomy + Plant Sciences + Soil Science

Аннотация: Spatial distributions of root systems of Larix gmelinii (Rupr.) Rupr. trees were examined in two stands in central Siberia: an even-aged stand (ca. 100 yrs-old) and a mature, uneven-aged (240-280 yrs-old) stand. Five larch trees of different sizes were sampled by excavating coarse roots (diameter > 5 mm) in each stand. Dimensions and ages of all first-order lateral roots were measured. Micro-scale conditions of soil temperature and soil water suction ( each 10 cm deep) were also examined in relation to earth hummock topography (mound vs. trough) and/or ground floor vegetation types (moss vs. lichens). All larch trees developed superficial root systems, consisting of the aborted short tap root (10-40 cm in soil depth) and some well-spread lateral roots (n = 4-13). The root network of each tree was asymmetric, and its rooting area reached about four times the crown projection area. Lateral roots generally expanded into the upper soil layers of the mounds where summer soil temperature was 1-6degreesC higher than inside nearby troughs. Chronological analysis indicated that lateral root expansion started successively from lower to upper parts of each aborted tap root, and some lateral roots occurred simultaneously at several decades after tree establishment. The process of root system development was likely to be primarily linked with post-fire dynamics of rhizosphere environment of the permafrost soils.

Полный текст,
WOS,
Scopus

Держатели документа:
Forestry & Forest Prod Res Inst, Tohoku Res Ctr, Morioka, Iwate 0200123, Japan
Forestry & Forest Prod Res Inst, Kukizaki, Ibaraki 3058687, Japan
Ryukoku Univ, Fac Intercultural Commun, Otsu, Shiga 5202194, Japan
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kajimoto, T...; Matsuura, Y...; Osawa, A...; Prokushkin, A.S.; Sofronov, M.A.; Abaimov, A.P.

    Size-mass allometry and biomass allocation of two larch species growing on the continuous permafrost region in Siberia
[Text] / T. . Kajimoto [et al.] // For. Ecol. Manage. - 2006. - Vol. 222, Is. 01.03.2013. - P314-325, DOI 10.1016/j.foreco.2005.10.031. - Cited References: 62 . - 12. - ISSN 0378-1127
РУБ Forestry

Аннотация: We examined size-mass allometry and biomass allocation of two larch species (Larix gmelinii (Rupr.) Rupr. and Larix cajanderi Mayer) that grow on the continuous permafrost regions in Siberia. Sample tree data (total n = 27) gathered from four mature stands (> 100 years old) were employed for analysis. First, to determine good size predictor of biomass, site-specific allometric relationships (log-linear equation form) were derived between dry mass of four components (stem, branch, needle and coarse root; >= 5 mm in diameter) and seven size variables; stem diameters (breast height, 30 cm height and crown base), sapwood areas (breast height and 30 cm height), and two combined-variables (tree height x dia-diameter). For all components, site-specific allometric equations based on breast-height diameter (D) always gave high correlations as those using other size variables. However, between-stand comparisons of the D-base site-specific allometry indicated that size dependency (i.e., regression slope) differed for stem mass. Besides, needle and coarse root mass for a given size (i.e., regression intercept) differed significantly among the four stands. These facts implied that D-base regression model was reliable for biomass estimation by site-specific allometry, but was not suitable for developing general (i.e., site-common) allometry. Second, to examine carbon allocation pattern, we estimated each stand biomass by applying corresponding site-specific D-base allometry. Stand total biomass ranged from 8.6 to 33.1 Mg ha(-1), and aboveground-total/coarse root biomass ratio (i.e., T/R) ranged from 1.5 to 2.6. The variation was mainly due to trade-offs between stem and root biomass. Average T/R was about 2.3 that was calculated for some reported L. gmelinii and L. cajanderi stands (n = 16), including our four stands. This average T/R was extremely small in comparison to that (5.1) of Scots pine (Pinus sylvestris L.) stands on the non- or discontinuous permafrost regions in Siberia. This finding strongly suggested that the two Larix species invested annual carbon gains largely into root growth. We discussed its ecological implications in relation to stand structure and permafrost soil-N conditions in the larch taiga ecosystem. (c) 2005 Elsevier B.V. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
Kyushu Res Ctr, Forestry & Forest Prod Res Inst, Kumamoto 8600862, Japan
Forestry & Forest Prod Res Inst, Tsukuba, Ibaraki 3058687, Japan
Ryukoku Univ, Fac Intercultural Commun, Otsu, Shiga 5202194, Japan
Russian Acad Sci, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
Russian Acad Sci, Inst Biol Problems Cryolithozone, Yakutsk 677891, Russia
Sakha Minist Nat Protect, Yakutsk 67000, Russia
Tohoku Res Ctr, Forestry & Forest Prod Res Inst, Morioka, Iwate 0200122, Japan
Hokkaido Univ, Boreal Forest Conservat Studies, Sapporo, Hokkaido 0600809, Japan

Доп.точки доступа:
Kajimoto, T...; Matsuura, Y...; Osawa, A...; Abaimov, A.P.; Zyryanova, O.A.; Isaev, A.P.; Yefremov, D.P.; Mori, S...; Koike, T...

    Critical analysis of root: shoot ratios in terrestrial biomes
[Text] / K. . Mokany, R. J. Raison, A. S. Prokushkin // Glob. Change Biol. - 2006. - Vol. 12, Is. 1. - P84-96, DOI 10.1111/j.1365-2486.2005.001043.x. - Cited References: 39 . - 13. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: One of the most common descriptors of the relationship between root and shoot biomass is the root : shoot ratio, which has become a core method for estimating root biomass from the more easily measured shoot biomass. Previous reviews have examined root : shoot ratio data, but have only considered particular vegetation types and have not always critically reviewed the data used. Reliable root : shoot ratios are needed for a wide range of vegetation types in order to improve the accuracy of root biomass estimates, including those required for estimating the effects of land management and land use change in National Greenhouse Gas Inventories. This study reviewed root : shoot ratios in terrestrial biomes. A key facet of our analysis was a critical methodological review, through which unreliable data were identified and omitted on the basis of specific criteria. Of the 786 root : shoot ratio observations collated, 62% were omitted because of inadequate or unverifiable root sampling methods. When only the reliable data were examined, root : shoot ratios were found to be negatively related to shoot biomass, mean annual precipitation, mean annual temperature, forest stand age, and forest stand height. Although a single allometric equation derived in this study reliably predicted root biomass from shoot biomass for forests and woodlands, in general, the use of vegetation-specific root : shoot ratios were found to be a more accurate method for predicting root biomass. When the root : shoot ratio data collated here were applied to an analysis of the global carbon budget, there was a 50% increase in estimated global root carbon stock, and a 12% increase in estimated total carbon stock of terrestrial vegetation. The use of the vegetation-specific root : shoot ratios presented in this study is likely to substantially improve the accuracy of root biomass estimates for purposes such as carbon accounting and for studies of ecosystem dynamics.

WOS,
Scopus,
Полный текст

Держатели документа:
Cooperat Res Ctr Greenhouse Accounting, Canberra, ACT 2601, Australia
CSIRO Forestry & Forest Prod, Kingston, ACT 2604, Australia
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Mokany, K...; Raison, R.J.; Prokushkin, A.S.

    Specific features of xylogenesis in Dahurian larch, Larix gmelinii (Rupr.) Rupr., growing on permafrost soils in Middle Siberia
[Text] / M. V. Bryukhanova [et al.] // Russ. J. Ecol. - 2013. - Vol. 44, Is. 5. - P361-366, DOI 10.1134/S1067413613050044. - Cited References: 34. - This study was supported by the SNSF SCOPES Program (project no. IZ73Z0_128035/1), RF President Grant for Young Scientists (no. MK-5498.2012.4), Russian Foundation for Basic Research (project no. 12-04-00542-a), and Scientific School Support Program (project no. NSh-5327.2012.4). . - 6. - ISSN 1067-4136
РУБ Ecology

Аннотация: Processes of xylem formation in Dahurian larch have been studied at three sites differing in the hydrothermal regime of soils in the permafrost zone of Middle Siberia. It has been found that the start and end dates of different phases of tree ring formation may differ between the sites by up to 14 days, depending on site conditions. The data obtained contribute to knowledge of possible changes in larch forest phytomass production and provide the possibility of predicting its dynamics under conditions of climate change.

WOS,
Полный текст,
Scopus

Держатели документа:
[Bryukhanova, M. V.
Kirdyanov, A. V.
Prokushkin, A. S.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Silkin, P. P.] Siberian Fed Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Kirdyanov, Alexander V.; Кирдянов, Александр Викторович; Prokushkin, Anatoly S.; Прокушкин, Анатолий Станиславович; Bryukhanova, M. V.; Брюханова, Марина Викторовна; Silkin, P.P.; SNSF SCOPES Program [IZ73Z0_128035/1]; RF President Grant for Young Scientists [MK-5498.2012.4]; Russian Foundation for Basic Research [12-04-00542-a]; Scientific School Support Program [NSh-5327.2012.4]

    Comparing forest measurements from tree rings and a space-based index of vegetation activity in Siberia
[Text] / A. G. Bunn [et al.] // Environ. Res. Lett. - 2013. - Vol. 8, Is. 3. - Ст. 35034, DOI 10.1088/1748-9326/8/3/035034. - Cited References: 36. - We thank the Northern Eurasian Earth Science Partnership Initiative for support via a grant from NASA-LCLUC-NEESPI (NNX09AK58G) to MKH and AGB and from NSF 0612341 and NSF 1044417 to AGB. VVS was supported by the Fulbright Scholar Program. Figure 1 was produced by Randal Bernhardt of the WWU Geography Department. . - 8. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Different methods have been developed for measuring carbon stocks and fluxes in the northern high latitudes, ranging from intensively measured small plots to space-based methods that use reflectance data to drive production efficiency models. The field of dendroecology has used samples of tree growth from radial increments to quantify long-term variability in ecosystem productivity, but these have very limited spatial domains. Since the cambium material in tree cores is itself a product of photosynthesis in the canopy, it would be ideal to link these two approaches. We examine the associations between the normalized differenced vegetation index (NDVI) and tree growth using 19 pairs of tree-ring widths (TRW) and maximum latewood density (MXD) across much of Siberia. We find consistent correlations between NDVI and both measures of tree growth and no systematic difference between MXD and TRW. At the regional level we note strong correspondence between the first principal component of tree growth and NDVI for MXD and TRW in a temperature-limited bioregion, indicating that canopy reflectance and cambial production are broadly linked. Using a network of 21 TRW chronologies from south of Lake Baikal, we find a similarly strong regional correspondence with NDVI in a markedly drier region. We show that tree growth is dominated by variation at decadal and multidecadal time periods, which the satellite record is incapable of recording given its relatively short record.

WOS,
Scopus

Держатели документа:
[Bunn, Andrew G.] Western Washington Univ, Dept Environm Sci, Huxley Coll, Bellingham, WA 98225 USA
[Hughes, Malcolm K.
Losleben, Mark] Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA
[Kirdyanov, Alexander V.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia
[Shishov, Vladimir V.
Vaganov, Eugene A.] Siberian Fed Univ, Krasnoyarsk, Russia
[Berner, Logan T.] Woods Hole Res Ctr, Falmouth, MA USA
[Oltchev, Alexander] RAS, Severtsov Inst Ecol & Evolut, Moscow 117901, Russia

Доп.точки доступа:
Bunn, A.G.; Hughes, M.K.; Kirdyanov, Alexander V.; Кирдянов, Александр Викторович; Losleben, M.; Shishov, V.V.; Berner, L.T.; Oltchev, A.; Vaganov, E.A.; Northern Eurasian Earth Science Partnership Initiative via NASA-LCLUC-NEESPI [NNX09AK58G]; NSF [0612341, 1044417]; Fulbright Scholar Program

    Intraseasonal carbon sequestration and allocation in larch trees growing on permafrost in Siberia after C-13 labeling (two seasons of 2013-2014 observation)
[Text] / O. Masyagina [et al.] // Photosynth. Res. - 2016. - Vol. 130, Is. 1-3. - P267-274, DOI 10.1007/s11120-016-0250-1. - Cited References:14. - We would like to thank staff of laboratory of biogeochemical cycles in forest ecosystems at V.N. Sukachev Institute of Forest Siberian Branch, namely Tsukanov A.A., Timokhina A.V., Klimchenko A.V., Panov A.V. for the various technical assistance during fieldworks at Tura Station (Evenkia, Russian Federation). This work was partly supported by the Russian Foundation of Basic Research (Grant No 13-04-00659-a) and by the Russian Science Foundation (14-24-00113). . - ISSN 0166-8595. - ISSN 1573-5079
РУБ Plant Sciences
Рубрики:
PRODUCTIVITY
   ECOSYSTEMS

   BIOMASS

   CO2

Кл.слова (ненормированные):
Permafrost -- Larix -- Stable isotopes -- C-13 -- Photoassimilation

Аннотация: This research is an attempt to study seasonal translocation patterns of photoassimilated carbon within trees of one of the high latitudes widespread deciduous conifer species Larix gmelinii (Rupr. Rupr). For this purpose, we applied whole-tree labeling by (CO2)-C-13, which is a powerful and effective tool for tracing newly developed assimilates translocation to tissues and organs of a tree. Experimental plot has been established in a mature 105-year-old larch stand located within the continuous permafrost area near Tura settlement (Central Siberia, 64A degrees 17'13aEuro(3)N, 100A degrees 11'55aEuro(3)E, 148 m a.s.l.). Measurements of seasonal photosynthetic activity and foliage parameters (i.e., leaf length, area, biomass, etc.), and sampling were arranged from early growing season (June 8, 2013; May 14, 2014) until yellowing and senescence of needles (September 17, 2013; September 14, 2014). Labeling by C-13 of the tree branch (June 2013, for 3 branch replicates in 3 different trees) and the whole tree was conducted at early (June 2014), middle (July 2014), and late (August 2013) phase of growing season (for different trees in 3 replicates each time) by three pulses [(CO2)max = 3000-4000 ppmv, (CO2)-C-13 (30 % v/v)]. We found at least two different patterns of carbon translocation associated with larch CO2 assimilation depending on needle phenology. In early period of growing season (June), C-13 appearing in newly developed needles is a result of remobilized storage material use for growth purposes. Then approximately at the end of June, growth processes is switching to storage processes lasting to the end of growing season.

WOS,
Смотреть статью

Держатели документа:
VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia.
NRC Kurchatov Inst, Moscow, Russia.
SRC Planeta, Moscow, Russia.

Доп.точки доступа:
Masyagina, Oxana; Prokushkin, Anatoly; Kirdyanov, Alexander; Artyukhov, Aleksey; Udalova, Tatiana; Senchenkov, Sergey; Rublev, Aleksey; Russian Foundation of Basic Research [13-04-00659-a]; Russian Science Foundation [14-24-00113]