Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 2

    Current Trend of Carbon Emissions from Wildfires in Siberia
/ E. Ponomarev, N. Yakimov, T. Ponomareva [et al.] // Atmosphere. - 2021. - Vol. 12, Is. 5. - Ст. 559, DOI 10.3390/atmos12050559. - Cited References:49. - This work was performed using the subject of project no. 0287-2019-0006. This research was partly funded by the Russian Foundation for Basic Research (RFBR) and Government of the Krasnoyarsk krai, and Krasnoyarsk krai Foundation for Research and Development Support, no. 20-44-242002. Grant of Siberian Federal University and Government of the Krasnoyarsk krai, and Krasnoyarsk krai Foundation for Research and Development Support "Long-term consequences of extreme fires in the permafrost zone of Siberia by the materials of satellite monitoring", 2020, no. KF-782 49/20. The data on wildfires was obtained and initially analyzed in 2004-2013 with the support of the NASA Land Cover Land Use Change (LCLUC) and Terrestrial Ecosystems (TE) programs. . - ISSN 2073-4433
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences
Рубрики:
FIRE
   AREA

   RADIATION

   DYNAMICS

   FORESTS

   IMPACT

   SMOKE

Кл.слова (ненормированные):
wildfire -- Siberia -- carbon emissions -- remote sensing

Аннотация: Smoke from wildfires in Siberia often affects air quality over vast territories of the Northern hemisphere during the summer. Increasing fire emissions also affect regional and global carbon balance. To estimate annual carbon emissions from wildfires in Siberia from 2002-2020, we categorized levels of fire intensity for individual active fire pixels based on fire radiative power data from the standard MODIS product (MOD14/MYD14). For the last two decades, estimated annual direct carbon emissions from wildfires varied greatly, ranging from 20-220 Tg C per year. Sporadic maxima were observed in 2003 (>150 Tg C/year), in 2012 (>220 Tg C/year), in 2019 (similar to 180 Tg C/year). However, the 2020 fire season was extraordinary in terms of fire emissions (similar to 350 Tg C/year). The estimated average annual level of fire emissions was 80 +/- 20 Tg C/year when extreme years were excluded from the analysis. For the next decade the average level of fire emissions might increase to 250 +/- 30 Tg C/year for extreme fire seasons, and to 110 +/- 20 Tg C/year for moderate fire seasons. However, under the extreme IPCC RPC 8.5 scenario for Siberia, wildfire emissions might increase to 1200-1500 Tg C/year by 2050 if there were no significant changes in patterns of vegetation distribution and fuel loadings.

WOS

Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Dept Ecol & Environm, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
George Mason Univ, Affiliate Fac, Dept Geog & Geoinformat Sci, Fairfax, VA 22030 USA.

Доп.точки доступа:
Ponomarev, Evgenii; Yakimov, Nikita; Ponomareva, Tatiana; Yakubailik, Oleg; Conard, Susan G.; Russian Foundation for Basic Research (RFBR)Russian Foundation for Basic Research (RFBR); Government of the Krasnoyarsk krai; Krasnoyarsk krai Foundation for Research and Development Support [20-44-242002, KF-782 49/20]; Siberian Federal University; NASA Land Cover Land Use Change (LCLUC) programNational Aeronautics & Space Administration (NASA); Terrestrial Ecosystems (TE) program; [0287-2019-0006]

    Soil Temperature in Disturbed Ecosystems of Central Siberia: Remote Sensing Data and Numerical Simulation
/ T. V. Ponomareva, K. Y. Litvintsev, K. A. Finnikov [et al.] // Forests. - 2021. - Vol. 12, Is. 8. - Ст. 994, DOI 10.3390/f12080994. - Cited References:80. - This work was performed using the subject of project of IF SB RAS no. 0287-2021-0010. The study of heat transfer in soil was performed using the subject of project of IT SB RAS no. 0257-2021-0001. This research was partly funded by the Russian Foundation for Basic Research (RFBR) and Government of the Krasnoyarsk krai, and Krasnoyarsk krai Foundation for Research and Development Support, no. 20-44-242002 ("Instrumental monitoring of physical properties and numerical modeling of the state of technogenically disturbed soils in Siberia"), and by Siberian Federal University and Government of the Krasnoyarsk krai, and Krasnoyarsk krai Foundation for Research and Development Support, 2020, no. KF-782 49/20 ("Long-term consequences of extreme fires in the permafrost zone of Siberia by the materials of satellite monitoring"). . - ISSN 1999-4907
РУБ Forestry

Аннотация: We investigated changes in the temperature regime of post-fire and post-technogenic cryogenic soils of Central Siberia using remote sensing data and results of numerical simulation. We have selected the time series of satellite data for two variants of plots with disturbed vegetation and on-ground cover: natural ecosystems of post-fire plots and post-technogenic plots with reclamation as well as dumps without reclamation. Surface thermal anomalies and temperature in soil horizons were evaluated from remote data and numerical simulation and compared with summarized experimental data. We estimated the influence of soil profile disturbances on the temperature anomalies forming on the surface and in soil horizons based on the results of heat transfer modeling in the soil profile. According to remote sensing data, within 20 years, the thermal insulation properties of the vegetation cover restore in the post-fire areas, and the relative temperature anomaly reaches the level of background values. In post-technogenic plots, conditions are more "contrast" comparing to the background, and the process of the thermal regime restoration takes a longer time (>60 years). Forming "neo-technogenic ecosystems" are distinct in special thermal regimes of soils that differ from the background ones both in reclamated and in non-reclamated plots. An assumption was made of the changes in the moisture content regime as the main factor causing the long-term existence of thermal anomalies in the upper soil horizons of disturbed plots. In addition, we discussed the formation of transition zones ("ecotones") along the periphery of the disturbed plots due to horizontal heat transfer.

WOS

Держатели документа:
SB RAS, Fed Res Ctr Krasnoyarsk Sci Ctr SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Ecol & Geog, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Kutateladze Inst Thermophys, Siberian Branch, Novosibirsk 630090, Russia.
Siberian Fed Univ, Inst Engn Phys & Radioelect, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Ponomareva, Tatiana, V; Litvintsev, Kirill Yu; Finnikov, Konstantin A.; Yakimov, Nikita D.; Sentyabov, Andrey, V; Ponomarev, Evgenii, I; IF SB RAS [0287-2021-0010]; IT SB RAS [0257-2021-0001]; Russian Foundation for Basic Research (RFBR)Russian Foundation for Basic Research (RFBR); Krasnoyarsk krai Foundation [20-44-242002, KF-782 49/20]; Siberian Federal University; Government of the Krasnoyarsk krai