Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 13

    Microbial Indication of Soils Contaminated with Industrial Emissions
[Text] / N. D. Sorokin, E. N. Afanasova // Contemp. Probl. Ecol. - 2011. - Vol. 4, Is. 5. - P508-512, DOI 10.1134/S1995425511050092. - Cited References: 26. - The work was carried out with financial support of RAS Programme no. 23, Project 1.3 "Succession Changes in Biodiversity in Technogenic Deteriorated Ecosystems of Siberia." . - 5. - ISSN 1995-4255
РУБ Ecology

Аннотация: Changes in the composition of microbial complexes and their biochemical activity in soil in the vicinity of a strong source of HF emission have been studied. A sharp decrease of the biomass, the number of asporous bacteria and actinomycetes, and a smaller decrease of the number of microscopic fungi has been revealed, along with a decrease in the enzymatic and respiratory activity of contaminated soil with the relative increase in the fraction of sporiferous bacteria. On the basis of the response of introduced population of Bacillus subtilis to different doses of HF, NaF, Na(2)SO(3) microbiological norm-fixing for technogenic soil ecosystems has been carried out.

Полный текст,
WOS,
Scopus

Держатели документа:
[Sorokin, N. D.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Afanasova, E. N.] Siberian Fed Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Sorokin, N.D.; Afanasova, E.N.

    Post-fire transformation of the microbial complexes in soils of larch forests in the lower Angara River region
[Text] / A. V. Bogorodskaya, G. A. Ivanova, P. A. Tarasov // Eurasian Soil Sci. - 2011. - Vol. 44, Is. 1. - P49-55, DOI 10.1134/S1064229310071014. - Cited References: 36. - This work was supported by the Russian Foundation for Basic Research (project no. 07-04-00562) and by the International Science and Technology Center (project no. 3695). . - 7. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The postfire transformation of the functional activity of the microbial cenoses and the main soil properties under mixed larch forests were studied in the lower reaches of the Angara River. It was shown that the intensity of the postfire changes in the population density, biomass, and activity of the microorganisms in the dark podzolized brown forest soil depended on the degree of burning of the ground cover and the surface litter during the fire. The maximum effects of the fire on the microbial cenoses were observed in the litter and the upper 5-cm-thick layer of the dark-humus horizon in the areas of intense burning. The postfire restoration of the structural-functional activity of the microbial cenoses was determined by the degree of transformation of soil properties and by the postpyrogenic succession in the ground cover. The microbial complexes of the dark podzolized brown forest soils under mixed larch forests in the studied region restored their functional activity after the fires of different intensities quicker than the microbial cenoses of the sandy podzols in the pyrogenic lichen-green-moss pine forests of the same zone.

Полный текст,
WOS,
Scopus

Держатели документа:
[Bogorodskaya, A. V.
Ivanova, G. A.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia
[Tarasov, P. A.] Siberian State Technol Univ, Krasnoyarsk 660049, Russia

Доп.точки доступа:
Bogorodskaya, A.V.; Ivanova, G.A.; Tarasov, P.A.

    Vertical and horizontal variation of carbon pools and fluxes in soil profile of wet southern taiga in European Russia
[Text] / H. . Santruckova [et al.] // Boreal Environ. Res. - 2010. - Vol. 15, Is. 3. - P357-369. - Cited References: 34. - The authors thank for support all persons kindly contributing this research, Keith Edwards for language correction, unknown reviewers for valuable comments and for financial support of EU project TCOS Siberia and project of MSM 600 766 5801. . - 13. - ISSN 1239-6095
РУБ Environmental Sciences

Аннотация: Vertical and horizontal distributions of soil organic carbon, potential microbial activity and basic soil properties were studied in a boreal mixed forest (Central Forest Reserve, TVER region) to elucidate whether the soil CO(2)-efflux is related to basic soil properties that affect the C pool and activity. Soil cores (0-100 cm depth) were taken from two transects every 50 meters (44 points) immediately after completion of soil CO(2)-efflux measurements. Soil was separated into layers and moisture, bulk density, root density and bacterial counts were determined within one day after soil was taken. Microbial respiration, biomass, CN contents and pH were measured within few months. The variability in the soil CO(2)-efflux and microbial activity was mainly explained by soil bulk density. Results further indicate that laboratory measurements of microbial respiration can represent heterotrophic soil respiration of a distinctive ecosystem in natural conditions, if microbial respiration is measured after the effect of soil handling disappears.

WOS,
Scopus

Держатели документа:
[Santruckova, Hana
Kastovska, Eva
Liveckova, Miluse] Univ S Bohemia, Fac Sci, CZ-37005 Ceske Budejovice, Czech Republic
[Kozlov, Daniil] Lomonosov Moscow State Univ, Dept Geog, Moscow 119992, Russia
[Kurbatova, Julya
Tatarinov, Fedor] RAS, AN Severtsov Inst Ecol & Evolut, Moscow 119071, Russia
[Shibistova, Olga] VN Sukachev Forest Inst, Krasnoyarsk 660036, Russia
[Lloyd, Jon] Univ Leeds, Sch Geog, Earth & Biosphere Inst, Leeds LS2 9JT, W Yorkshire, England

Доп.точки доступа:
Santruckova, H...; Kastovska, E...; Kozlov, D...; Kurbatova, J...; Liveckova, M...; Shibistova, O...; Tatarinov, F...; Lloyd, J...

    The intensity of organic matter decomposition in gray soils of forest ecosystems in the southern taiga of Central Siberia
[Text] / E. F. Vedrova // Eurasian Soil Sci. - 2008. - Vol. 41, Is. 8. - P860-868, DOI 10.1134/S1064229308080085. - Cited References: 45. - This study was supported by the Russian Foundation for basic research, project nos. 03-04-20018 and 06-06-90596. . - 9. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The estimates of the carbon pool in the organic matter of gray soils of the southern taiga, the intensity of destruction of its components, and participation of the latter in the formation of the mineralized carbon flux to the atmosphere are presented for different stages of succession of deciduous (birch) and coniferous (fir) forests. The carbon pool varies from 139.7 to 292.7 t/ha. It is distributed between phytodetritus, mobile and stabile humus (32, 19, and 49%, respectively). The intensity of the mineralization carbon flux to the atmosphere amounts to 3.93-4.13 t C per year. Phytodetritus plays the main role in the formation of this flux. In the soils under the forests studied, 4-6% of the carbon flux are formed owing to mineralization of the newly formed soil humus. In birch forests, 2-6% (0.1-0.2% of the humus pool in the 0-20-cm layer) is the contribution to the flux due to mineralization of soil humus. In fir forests, the mineralized humus is compensated by humus substances synthesized in the process of humification during phytodetritus decomposition.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Vedrova, E.F.

    Forests and swamps of Siberia in the global carbon cycle
[Text] / E. A. Vaganova [et al.] // Contemp. Probl. Ecol. - 2008. - Vol. 1, Is. 2. - P168-182, DOI 10.1134/S1995425508020021. - Cited References: 67 . - 15. - ISSN 1995-4255
РУБ Ecology

Аннотация: Results of measurements and calculations of carbon budget parameters of forests and swamps of Siberia are reported. The zonal variability of reserves (and an increment in reserves) of carbon in forest and swamp ecosystems is characterized, carbon dioxide fluxes are measured directly by means of microeddy pulsations, and an uncertainty brought into the calculation of carbon budget parameters by forest fires is estimated.

Полный текст,
WOS

Держатели документа:
[Vaganova, E. A.
Vedrova, E. F.
Verkhovets, S. V.
Efremov, S. P.
Efremova, T. T.
Onuchin, A. A.
Sukhinin, A. I.
Shibistova, O. B.] RAS, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Kruglov, V. B.] Krasnoyarsk State Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Vaganov, E.A.; Vedrova, E.F.; Verkhovets, S.V.; Efremov, S.P.; Efremova, T.T.; Kruglov, V.B.; Onuchin, A.A.; Sukhinin, A.I.; Shibistova, O.B.

    Carbon emission by soils in forests damaged by the Siberian moth
[Text] / Y. N. Baranchikov, V. D. Perevoznikova, Z. V. Vishnyakova // Russ. J. Ecol. - 2002. - Vol. 33, Is. 6. - P398-401, DOI 10.1023/A:1020947413854. - Cited References: 21 . - 4. - ISSN 1067-4136
РУБ Ecology
Рубрики:
MICROBIAL BIOMASS
   RESPIRATION

Кл.слова (ненормированные):
Siberian moth -- carbon emission -- defoliation -- zoogenic fall

Аннотация: In the southern-taiga low grass-green moss fir forest completely defoliated by the Siberian moth, the rate of soil respiration in the third year after the pest population outbreak was 1.5 times higher than in an undisturbed tree stand. This was explained by a significant increase in the abundance and activity of soil microorganisms in the pest-defoliated forest, which occurred due to the qualitative changes in the litter composition and the increased temperature and moisture in the upper soil layers. The rate of carbon emission from the soil in the defoliated forest was 41.7 kg/ha per day, compared to 28.3 kg/ha per day in the undisturbed fir forest.

Scopus,
WOS

Держатели документа:
Russian Acad Sci, Sukachev Inst Forestry, Siberian Branch, Akademgorodok, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Baranchikov, Y.N.; Perevoznikova, V.D.; Vishnyakova, Z.V.

    Water use strategies and ecosystem-atmosphere exchange of CO2 in two highly seasonal environments
[Text] / A. . Arneth [et al.] // Biogeosciences. - 2006. - Vol. 3, Is. 4. - P421-437. - Cited References: 67 . - 17. - ISSN 1726-4170
РУБ Ecology + Geosciences, Multidisciplinary

Аннотация: We compare assimilation and respiration rates, and water use strategies in four divergent ecosystems located in cold-continental central Siberia and in semi-arid southern Africa. These seemingly unrelated systems have in common a harsh and highly seasonal environment with a very sharp transition between the dormant and the active season, with vegetation facing dry air and soil conditions for at least part of the year. Moreover, the northern high latitudes and the semi-arid tropics will likely experience changes in key environmental parameters (e.g., air temperature and precipitation) in the future; indeed, in some regions marked climate trends have already been observed over the last decade or so. The magnitude of instantaneous or daily assimilation and respiration rates, derived from one to two years of eddy covariance measurements in each of the four ecosystems, was not related to the growth environment. For instance, respiration rates were clearly highest in the two deciduous systems included in the analysis (a Mopane woodland In northern Botswana and a Downy birch forest in Siberia; 300mmol m(-2) d(-1)), while assimilation rates in the Mopane woodland were relatively similar to a Siberian Scots pine canopy for a large part of the active season (ca. 420 mmol m(-2) d(-1)). Acknowledging the limited number of ecosystems compared here, these data nevertheless demonstrate that factors like vegetation type, canopy phenology or ecosystem age can override larger-scale climate differences in terms of their effects on carbon assimilation and respiration rates. By far the highest rates of assimilation were observed in Downy birch, an early successional species. These were achieved at a rather conservative water use, as indicated by relatively low levels of lambda the marginal water cost of plant carbon gain. Surprisingly, the Mopane woodland growing in the semi-arid environment had significantly higher values of lambda However, its water use strategy included a very plastic response to intermittently dry periods, and values of lambda were much more conservative overall during a rainy season with low precipitation and high air saturation deficits. Our comparison demonstrates that forest ecosystems can respond very dynamically in terms of water use strategy, both on interannual and much shorter time scales. But it remains to be evaluated whether and in which ecosystems this plasticity is mainly due to a short-term stomatal response, or alternatively goes hand in hand with changes in canopy photosynthetic capacity.

WOS,
Scopus

Держатели документа:
Lund Univ, Dept Phys Geog & Ecosyst Anal, S-22363 Lund, Sweden
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Univ Wageningen & Res Ctr, Nat Conservat & Plant Ecol Grp, Wageningen, Netherlands
Univ Tuscia, Viterbo, Italy
Int Inst Geoinformat Sci & Earth Observat, Enschede, Netherlands
VN Sukachev Forest Inst, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Arneth, A...; Veenendaal, E.M.; Best, C...; Timmermans, W...; Kolle, O...; Montagnani, L...; Shibistova, O...

    The state of microbial complexes in soils of forest ecosystems after fires and defoliation of stands by gypsy moths
[Text] / A. V. Bogorodskaya, Y. N. Baranchikov, G. A. Ivanova // Eurasian Soil Sci. - 2009. - Vol. 42, Is. 3. - P310-317, DOI 10.1134/S1064229309030089. - Cited References: 37. - This work was supported by the Russian Foundation for Basic Research (project no. 07-04-00562). . - 8. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The state of microbial cenoses in the soils of forest ecosystems damaged by fires of different strengths and gypsy moth outbreaks (Central Siberia) was assessed by the intensity of the basal respiration, the content of carbon of the microbial biomass, and the microbial metabolic quotient. The degree of the disturbance of the microbial cenoses in the soils under pine forests after fires was higher than that in the soils under the forests defoliated by gypsy moths. The greatest changes of the microbial complexes were recorded after the fires of high and medium intensity. In the litters, the content of the microbial biomass, the intensity of basal respiration, and the microbial metabolic quotient value were restored on the fifth year after the fires, whereas in the upper (0-10 cm) soil layer, these parameters still differed from those in the control variant, especially after the highly intense fires. After the weak fires, the ecophysiological state of the microbial complexes was restored within two-three years.

Полный текст,
WOS,
Scopus

Держатели документа:
[Bogorodskaya, A. V.
Baranchikov, Yu. N.
Ivanova, G. A.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Bogorodskaya, A.V.; Baranchikov, Y.N.; Ivanova, G.A.; Russian Foundation for Basic Research [07-04-00562]

    Biological activity of waste dump substrates in the eastern part of the Kansk-Achinsk coal field
[Text] / O. V. Trefilova, P. A. Oskorbin // Eurasian Soil Sci. - 2014. - Vol. 47, Is. 2. - P96-101, DOI 10.1134/S1064229314020112. - Cited References: 22 . - ISSN 1064-2293. - ISSN 1556-195X
РУБ Soil Science

Аннотация: The results of a field experiment for studying the seasonal dynamics of the CO2 (R-all) emitted from the overburden and enclosing rocks of a coal mine are presented as an integral index of their biological activity. The mean rate of the CO2 emission from the control substrate was 1.2 g C/m(2) per 24 h. The intensity of R-all for the variant with the application of mineral and complex fertilizers, along with a microbiological preparation, was higher by 28 and 34%, respectively. In the same variants, the R-all values little changed during the whole growing period. The measurements of the potential respiration of the rock mixture in the laboratory showed that a significant part of the CO2 flux was formed at the expense of carbon dioxide of abiotic origin. The values of the CO2 emission are concluded to be overestimated as compared to those for the real level of the biological activity of the substrates studied.

WOS,
Scopus

Держатели документа:
[Trefilova, O. V.
Oskorbin, P. A.] Russian Acad Sci, Siberian Div, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia
ИЛ СО РАН

Доп.точки доступа:
Trefilova, O.V.; Oskorbin, P.A.

    Biological sources of soil CO2 under Larix sibirica and Pinus sylvestris
[Text] / A. I. Matvienko, M. I. Makarov, O. V. Menyailo // Russ. J. Ecol. - 2014. - Vol. 45, Is. 3. - P174-180, DOI 10.1134/S1067413614030072. - Cited References: 15. - This study was supported by the Russian Foundation for Basic Research (project no. 10-04-92518-IK_a), the Siberian Branch of the Russian Academy of Sciences (project no. 122), and a CRDF grant no. RUG1-2979-KR-10. . - ISSN 1067-4136. - ISSN 1608-3334
РУБ Ecology

Аннотация: Mycorrhizal ingrowth collars were used to study the effect of tree species on the seasonal dynamics of carbon dioxide flux from three major sources of soil respiration: (1) plant roots, (2) mycorrhizal hyphae, and (3) microorganisms. Distinct seasonality in carbon transport to mycorrhizae was revealed, with its highest values being observed during the second half of the growing season. The annual amount of C transferred through mycorrhizae did not differ between the two tree species, and the contribution of mycorrhizae to soil surface CO2 emission was about 20%.

WOS,
Полный текст

Держатели документа:
[Matvienko, A. I.
Menyailo, O. V.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
[Makarov, M. I.] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
ИЛ СО РАН

Доп.точки доступа:
Matvienko, A.I.; Makarov, M.I.; Menyailo, O.V.; Russian Foundation for Basic Research [10-04-92518-IK_a]; Siberian Branch of the Russian Academy of Sciences [122]; CRDF [RUG1-2979-KR-10]

    The Impact of Climatic Factors on CO2 Emissions from Soils of Middle-Taiga Forests in Central Siberia: Emission as a Function of Soil Temperature and Moisture
/ A. V. Makhnykina, A. S. Prokushkin, O. V. Menyailo [et al.] // Russ. J. Ecol. - 2020. - Vol. 51, Is. 1. - P46-56, DOI 10.1134/S1067413620010063. - Cited References:35. - This study was supported by the Russian Foundation for Basic Research, project nos. 17-05-01257 and 18-34-00736. . - ISSN 1067-4136. - ISSN 1608-3334
РУБ Ecology

Аннотация: Soil CO2 emission is one of the most important components of the global carbon cycle. This study analyzes the seasonal dynamics of soil emission for various land cover types in the middle taiga subzone of central Siberia during five growing seasons. It is shown that, throughout a vast area covered by pine forests and their derivatives formed on sandy soils, seasonal CO2 emission values are determined primarily by the moisture conditions and only secondarily by the temperature regime and ecosystem type. The effect of the forest type is manifested only under the most favorable moisture conditions. A new approach is proposed: divide the growing season into dry and moist periods depending on the threshold soil moisture for areas with different vegetation types.

WOS

Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Makhnykina, A. V.; Prokushkin, A. S.; Menyailo, O. V.; Verkhovets, S. V.; Tychkov, I. I.; Urban, A. V.; Rubtsov, A. V.; Koshurnikova, N. N.; Vaganov, E. A.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [17-05-01257, 18-34-00736]

    Features of the Formation of Microbiomes in Two Types of Soils under Pine Provenance Trials of Pinus sibirica Du Tour and Pinus koraiensis Siebold et Zucc
/ I. D. Grodnitskaya, G. V. Kuznetsova, O. E. Pashkeeva, G. I. Antonov // Biol. Bull. - 2021. - Vol. 48, Is. 4. - P425-439, DOI 10.1134/S1062359021030067. - Cited References:35. - This work was supported by the Russian Foundation for Basic Research, project no. 13-04-01671. . - ISSN 1062-3590. - ISSN 1608-3059
РУБ Biology

Аннотация: The effect of pine provenance trials of Pinus sibirica Du Tour and Pinus koraiensis Siebold et Zucc. grown in Krasnoyarsk and Khabarovsk krais on the chemical and biological parameters of gray forest and brown forest soils in the rhizosphere and between rows of plantations is compared. It is shown that the interspecies heterogeneity of pines affects the chemical composition of the soil, the enzymatic and microbiological activity, and the formation of prokaryotic microbiomes. It is noted that the biodiversity of prokaryotes is more strongly determined by the features of soil types than by the inter- and intraspecies heterogeneity of pines and by the effect of their roots. The phyla Proteobacteria, Acidobacteria, and Actinobacteria dominate in both soil types and together account for 75-85% of the total number of type-specific 16S rRNA gene sequences in each soil.

WOS

Держатели документа:
Russian Acad Sci, Sukachev Inst Forests, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Grodnitskaya, I. D.; Kuznetsova, G., V; Pashkeeva, O. E.; Antonov, G., I; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [13-04-01671]

    SEASONAL DYNAMICS OF CO2 EMISSION FROM THE SURFACE OF THE RAISED BOG IN CENTRAL SIBERIA
/ A. V. Makhnykina, D. A. Polosukhina, R. A. Kolosov, A. S. Prokushkin // Geosfernye Issledov. - 2021. - Is. 4. - С. 85-93, DOI 10.17223/25421379/21/7. - Cited References:25 . - ISSN 2542-1379. - ISSN 2541-9943
РУБ Geosciences, Multidisciplinary
Рубрики:
CARBON
   RESPIRATION

   PEATLANDS

Кл.слова (ненормированные):
CO2 emission -- vegetation period -- groundwater level -- boreal zone -- carbon -- cycle

Аннотация: The bog ecosystems of the northern regions, with low productivity, can accumulate large amounts of carbon due to the low rate of decomposition and respiration. However, it is expected that climate change will lead to an intensification of assimilation and respiratory activity. In this work we considered the emission activity of a raised bog during the growing season. We also analyzed the main environmental factors that could have a significant impact on the CO2 emission rates from the bog surface. In our study, we examined the seasonal dynamics of CO2 emission from the surface of a raised bog (ryam). The study of soil emission was carried out for three seasons (2018-2020) on sections of the bog area of different heights - ridges and hollows. Soil emission measurements were performed using an LI-8100A infrared gas analyzer (Li-cor Inc., Lincoln, USA). Temperature measurements measured at three depths - 5, 10, and 15 cm from the surface using a Soil Temperature Probe Type E (Omega, USA). A Theta Probe Model ML moisture meter (Delta T Devices Ltd., UK) was used to measure the volumetric moisture (5 cm from the surface). The bog water level was measured during the entire frost-free period using the HOBO Water level logger U20L-04 (Onset, USA). In terms of the temperature regime of soils, the studied areas also differ significantly from each other, demonstrating the big discrepancies in the more humid seasons of 2019 and 2020. The difference in temperature in these seasons was about 1.0 degrees C, while in the 2018 season with insufficient moisture, the difference was two times less 0.5 degrees C. The maximum emission fluxes of CO2 in the studied bog massif were recorded in the first half of August, and the lowest - from the middle of September. The highest emission rates were recorded in the 2019 season: CO2 fluxes from the bog surface averaged 4.17 +/- 4.55 mu mol CO2/m(2)/s per season. For all observation seasons, CO2 fluxes on ridges exceeded hollows by more than 60 % (p <= 0.05). The strongest dependence was observed between the CO2 emission rate and soil temperature, moreover, in the season with the amount of precipitation below the mean annual norm (http://www.meteo.ru) - 2018, the correlation is higher and the rcoefficient was 0.6 and 0.8 for the ridge and hollow sites, respectively (p <= 0.05). The dependence of CO2 emission on moisture conditions, on the contrary, is rather weak for two sites, and is often negative. Thus, based on the results obtained, it can be concluded that the emission flux from the surface of a raised bog during the snow-free period depends not only on the moisture conditions of a particular season, but also on the section of the bog area: the emission of CO2 from local elevations of the microrelief - ridges is much higher than from more watered areas - hollows. A significant response to moisture conditions was found only for the season with insufficient moisture and in an elevated section of the bog area - ridge site. The CO2 emission rate during the growing season is mainly determined by the temperature regime.

WOS

Держатели документа:
Siberian Fed Univ, Krasnoyarsk, Russia.
SB RAS, VN Sukachev Inst Forest, Krasnoyarsk, Russia.

Доп.точки доступа:
Makhnykina, A., V; Polosukhina, D. A.; Kolosov, R. A.; Prokushkin, A. S.