Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 5

    Stable carbon isotope labeling reveals different carry-over effects between functional types of tropical trees in an Ethiopian mountain forest
/ J. . Krepkowski [et al.] // New Phytol. - 2013. - Vol. 199, Is. 2. - P431-440, DOI 10.1111/nph.12266. - Cited References: 56. - We are indebted to the German Research Foundation for funding this project (BR 1895/15). We are grateful to the two anonymous reviewers for their constructive comments, which helped us to improve the quality of the paper. . - 10. - ISSN 0028-646X
РУБ Plant Sciences

Аннотация: We present an intra-annual stable carbon isotope (13C) study based on a labeling experiment to illustrate differences in temporal patterns of recent carbon allocation to wood structures of two functional types of trees, Podocarpus falcatus (a late-successional evergreen conifer) and Croton macrostachyus (a deciduous broadleaved pioneer tree), in a tropical mountain forest in Ethiopia. Dendrometer data, wood anatomical thin sections, and intra-annual 13C analyses were applied. Isotope data revealed a clear annual growth pattern in both studied species. For P.falcatus, it was possible to synchronize annual 13C peaks, wood anatomical structures and monthly precipitation patterns. The labeling signature was evident for three consecutive years. For C.macrostachyus, isotope data illustrate a rapid decline of the labeling signal within half a year. Our 13C labeling study indicates a distinct difference in carryover effects between trees of different functional types. A proportion of the labeled 13C is stored in reserves of wood parenchyma for up to 3yr in P.falcatus. By contrast, C.macrostachyus shows a high turnover of assimilates and a carbon carryover effect is only detectable in the subsequent year.

Полный текст,
WOS,
Scopus

Держатели документа:
[Krepkowski, Julia
Braeuning, Achim] Univ Erlangen Nurnberg, Inst Geog, D-91054 Erlangen, Germany
[Gebrekirstos, Aster] World Agroforestry Ctr, Nairobi, Kenya
[Shibistova, Olga] Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany
[Shibistova, Olga] Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Krepkowski, J...; Gebrekirstos, A...; Shibistova, O...; Brauning, A...

    Isotopic composition (delta(13)C, delta(18)O) in wood and cellulose of Siberian larch trees for early Medieval and recent periods
[Text] / O. V. Sidorova [et al.] // J. Geophys. Res.-Biogeosci. - 2008. - Vol. 113, Is. G2. - Ст. G02019, DOI 10.1029/2007JG000473. - Cited References: 63 . - 13. - ISSN 0148-0227
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: We related tree ring width (TRW) and isotopic composition (delta(13)C, delta(18)O) of wood and cellulose from four larch trees (Larix cajanderi Mayr.) to climate parameters. The material was sampled in northeastern Yakutia [70 degrees N-148 degrees E] for the recent (AD 1880-2004) and early Medieval (AD 900-1000) periods. During the recent period June, July, and August air temperatures were positively correlated with delta(13)C and delta(18)O of wood and cellulose, while July precipitation was negatively correlated. Furthermore, the vapor pressure deficit (VPD) of July and August was significantly correlated with delta(13)C of wood and cellulose, but VPD had almost no influence on delta(18)O. Comparative analyses between mean isotope values for the (AD 900-1000) and (AD 1880-2004) periods indicate similar ranges of climatic conditions, with the exception of the period AD 1950-2004. While isotopic ratios in cellulose are reliably related to climatic variables, during some periods those in whole wood showed even stronger relationships. Strong positive correlations between delta(18)O of cellulose and Greenland ice-core (GISP2) data were detected for the beginning of the Medieval period (r = 0.86; p 0.05), indicating the reliability of isotope signals in tree rings for large-scale reconstructions.

WOS,
Scopus

Держатели документа:
[Sidorova, Olga V.
Naurzbaev, Mukhtar M.
Vaganov, Eugene A.] Akademgorodok, VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Siegwolf, Rolf T. W.
Saurer, Matthias] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[Vaganov, Eugene A.] Siberian Fed Univ, Krasnoyarsk, Russia

Доп.точки доступа:
Sidorova, O.V.; Siegwolf, RTW; Saurer, M...; Naurzbaev, M.M.; Vaganov, E.A.

    Extreme climatic events in the Altai Republic according to dendrochronological data
[Text] / V. V. Barinov [et al.] // Biol. Bull. - 2016. - Vol. 43, Is. 2. - P152-161, DOI 10.1134/S1062359016020023. - Cited References:43. - This study was supported by the Russian Foundation for Basic Research (project nos. 12-06-33040, 13-05-98061, and 13-05-00555) and the Russian Science Foundation (grant no. 14-14-00295). . - ISSN 1062-3590. - ISSN 1026-3470
РУБ Biology
Рубрики:
RINGS

Аннотация: The results of dating of extreme climatic events by damage to the anatomical structure and missing tree rings of the Siberian larch in the upper forest boundary of the Altai Republic are given. An analysis of the spatial distribution of the revealed dates over seven plots (Kokcy, Chind, Ak-ha, Jelo, Tute, Tara, and Sukor) allowed us to distinguish the extreme events on interregional (1700, 1783, 1788, 1812, 1814, 1884), regional (1724, 1775, 1784, 1835, 1840, 1847, 1850, 1852, 1854, 1869, 1871, 1910, 1917, 1927, 1938, 1958, 1961), and local (1702, 1736, 1751, 1785, 1842, 1843, 1874, 1885, 1886, 1919, 2007, and 2009) scales. It was shown that the events of an interregional scale correspond with the dates of major volcanic eruptions (Grimsvotn, Lakagigar, Etna, Awu, Tambora, Soufriere St. Vinsent, Mayon, and Krakatau volcanos) and extreme climatic events, crop failures, lean years, etc., registered in historical sources.

WOS,
Scopus

Держатели документа:
Siberian Fed Univ, Pr Svobodnyi 79, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Siberian Branch, Inst Geol & Mineral, Pr Akad Koptyuga 3, Novosibirsk 630090, Russia.
Ural Fed Univ, Ul Mira 19, Ekaterinburg 620002, Russia.
Novosibirsk State Univ, Ul Pirogova 2, Novosibirsk 630090, Russia.
Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Akademgorodok 50,Str 28, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Barinov, V. V.; Myglan, V. S.; Nazarov, A. N.; Vaganov, E. A.; Agatova, A. R.; Nepop, R. K.; Russian Foundation for Basic Research [12-06-33040, 13-05-98061, 13-05-00555]; Russian Science Foundation [14-14-00295]

    DENDROECOLOGICAL RESEARCH OF TREES GROWING ON PERMAFROST IN SIBERIA, RUSSIA
/ A. V. Kirdyanov [et al.] // WATER RESOURCES, FOREST, MARINE AND OCEAN ECOSYSTEMS CONFERENCE : STEF92 TECHNOLOGY LTD, 2016. - 16th International Multidisciplinary Scientific Geoconference (SGEM (JUN 30-JUL 06, 2016, Albena, BULGARIA). - P517-524. - (International Multidisciplinary Scientific GeoConference-SGEM). - Cited References:14 . -
РУБ Ecology + Oceanography + Soil Science + Water Resources
Рубрики:
GROWTH
   LARCH

   TEMPERATURE

   RINGS

Кл.слова (ненормированные):
permafrost -- conifers -- tree radial growth -- tree-ring parameters -- climatic -- response

Аннотация: The boreal forest accounts for approximately 22% of the Northern Hemisphere landmass with nearly 40% of this huge biome growing on continuously frozen soils. Projected climate change leading to degradation of permafrost and increasing drought situation at high latitudes in Eurasia will seriously affect productivity of forests on permafrost. Here we present the results of an on-going research of tree radial growth in the midst of the permafrost zone in Siberia, Russia (Tura region, 64 degrees N, 100 degrees E, 140-610 m a.s.1.). Tree-ring width and density chronologies of Gmelin larch and Siberian spruce from a great variety of sites characterized by different thermo-hydrological regime of soils are analyzed. The obtained results reveal that current tree radial growth and tree-ring structure in permafrost region in Siberia are largely dependent on local site conditions and may be constrained by low air and soil temperatures as well as soil water availability. Varying climatic responses and seasonal radial growth of trees at different habitats indicate a range of possible scenarios of further development of northern larch stands. Forest fire is another important factor strongly affecting tree stand dynamics and forest ecosystem functioning in the continuous permafrost zone. Analysis of tree-ring parameters indicate that post-fire dynamics of tree-ring structure is in accordance with the changes in habitat conditions caused by removal by fire and then gradual recovery of ground vegetation resulting in an alteration in soil active layer depth. In general, the results of this multi-proxy analysis for trees growing under various conditions in the continuous permafrost zone in Siberia allow assumptions about changes in tree productivity, stand dynamics and therefore carbon uptake under projected climate change and permafrost degradation.

WOS

Держатели документа:
RAS, VN Sukachev Inst Forest, SB, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Natl Nat Reserve Stolby, Krasnoyarsk, Russia.

Доп.точки доступа:
Kirdyanov, Alexander V.; Bryukhanova, Marina V.; Knorre, Anastasia A.; Tabakova, Maria A.; Prokushkin, Anatoly S.

    Exploration of the Climate Sensitivity of Xylem Parenchyma in Pinus sylvestris L. in the Forest-steppe of Southern Siberia
/ M. A. Tabakova, K. A. Tabakova, K. I. Khotcinskaia [et al.] // Russ. J. Ecol. - 2021. - Vol. 52, Is. 5. - P406-411, DOI 10.1134/S106741362105012X. - Cited References:23. - This work was carried out in the Laboratory for complex studies of forest dynamics of Eurasia of the Siberian Federal University (FSRZ-2020-0014), with financial support from the Russian Science Foundation (Grant 18-14-00072, sampling and measurements) and (Grant 18-74-10048, data analysis). . - ISSN 1067-4136. - ISSN 1608-3334
РУБ Ecology
Рубрики:
RAY PARENCHYMA
   RESPONSES

   GROWTH

   RINGS

   TOOL

Кл.слова (ненормированные):
climate -- conifers -- tree growth -- quantitative wood anatomy -- ray -- parenchyma

Аннотация: The forest-steppe ecotone in southern Siberia is the natural transition zone from the dry steppe in the south to the wetter taiga in the north, where tree growth is increasingly limited due to drought. Within this zone, tree growth limitation is expected to intensify due to ongoing climate changes, reducing forest productivity, affecting tree physiological processes and increasing tree mortality, with potential implications for the regional and global carbon cycle. We explored Pinus sylvestris L. tree ring growth and structure response to climate in southern Siberia. We measured tree-ring width (RW) and xylem parenchyma represented as the percentage of ring surface occupied by parenchyma rays (PERPAR) and the total amount of ray parenchyma per sample width (TOTRAY) within the growth rings for the 1967-2018 period. The results showed an influence of environmental conditions before and during the formation of ray parenchyma, with an independent climate response from the observed in the RW. Therefore, pine xylem parenchyma-based chronologies have potential as a proxy to evaluate climate sensitivity in P. sylvestris. However, the dependence on climate conditions might affect ray parenchyma's critical role in conifers as P. sylvestris under the current temperature-induced drought trend in the forest-steppe.

WOS

Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
RAS, Krasnoyarsk Sci Ctr, Fed Res Ctr, Sukachev Inst Forest,SB, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Tabakova, M. A.; Tabakova, K. A.; Khotcinskaia, K. I.; Sergeeva, O. V.; Arzac, A.; Laboratory for complex studies of forest dynamics of Eurasia of the Siberian Federal University [FSRZ-2020-0014]; Russian Science FoundationRussian Science Foundation (RSF) [18-14-00072, 18-74-10048]