Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 17

    Biogeochemistry of stable Ca and radiogenic Sr isotopes in a larch-covered permafrost-dominated watershed of Central Siberia
/ M. L. Bagard [et al.] // Geochim. Cosmochim. Acta. - 2013. - Vol. 114. - P169-187, DOI 10.1016/j.gca.2013.03.038. - Cited References: 104. - We thank T. Bullen and two anonymous reviewers for their thorough and constructive reviews and A. Jacobson for editorial handling. S. Gangloff is thanked for her assistance with Ca isotope chemistry and T. Perrone for his help in measuring Sr isotopes. This work was supported by the French INSU-CNRS program "EC2CO-Cytrix", and CNRS program "GDRI CAR-WET-SIB, ANR "Arctic Metals", programs of presidium UroRAS and RAS. It was also supported by the funding from the Region Alsace, France, and the CPER 2003-2013 "REALISE". MLB benefited the funding of a Ph.D. scholarship from the French Ministry of National Education and Research. This is an EOST-LHyGeS contribution. . - 19. - ISSN 0016-7037
РУБ Geochemistry & Geophysics

Аннотация: Stable Ca and radiogenic Sr isotope compositions were measured in different compartments (stream water, soil solutions, rocks, soils and soil leachates and vegetation) of a small permafrost-dominated watershed in the Central Siberian Plateau. The Sr and Ca in the area are supplied by basalt weathering and atmospheric depositions, which significantly impact the Sr isotopic compositions. Only vegetation significantly fractionates the calcium isotopes within the watershed. These fractionations occur during Ca uptake by roots and along the transpiration stream within the larch trees and are hypothesised to be the result of chromatographic processes and Ca oxalate crystallisations during Ca circulation or storage within plant organs. Biomass degradation significantly influences the Ca isotopic compositions of soil solutions and soil leachates via the release of light Ca, and organic and organo-mineral colloids are thought to affect the Ca isotopic compositions of soil solutions by preferential scavenging of Ca-40. The imprint of organic matter degradation on the delta Ca-44/40 of soil solutions is much more significant for the warmer south-facing slope of the watershed than for the shallow and cold soil active layer of the north-facing slope. As a result, the available stock of biomass and the decomposition rates appear to be critical parameters that regulate the impact of vegetation on the soil-water system in permafrost areas. Finally, the obtained delta Ca-44/40 patterns contrast with those described for permafrost-free environments with a much lower delta Ca-44/40 fractionation factor between soils and plants, suggesting specific features of organic matter decomposition in permafrost environments. The biologically induced Ca isotopic fractionation observed at the soil profile scale is not pronounced at the scale of the streams and large rivers in which the delta Ca-44/40 signature may be controlled by the heterogeneity of lithological sources. (C) 2013 Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Bagard, Marie-Laure
Schmitt, Anne-Desiree
Chabaux, Francois
Stille, Peter] Univ Strasbourg, F-67084 Strasbourg, France
[Bagard, Marie-Laure
Schmitt, Anne-Desiree
Chabaux, Francois
Stille, Peter] CNRS, EOST, LHyGeS, F-67084 Strasbourg, France
[Schmitt, Anne-Desiree] Univ Franche Comte, CNRS, UMR 6249, F-25030 Besancon, France
[Pokrovsky, Oleg S.
Viers, Jerome] Univ Toulouse 3, CNRS, UMR 5563, Geosci & Environm Toulouse, F-31400 Toulouse, France
[Pokrovsky, Oleg S.] Russian Acad Sci, Inst Ecol Problems North, Arkhangelsk, Russia
[Labolle, Francois] Univ Strasbourg, Inst Zool & Biol Gen, F-67000 Strasbourg, France
[Prokushkin, Anatoly S.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Bagard, M.L.; Schmitt, A.D.; Chabaux, F...; Pokrovsky, O.S.; Viers, J...; Stille, P...; Labolle, F...; Prokushkin, A.S.

    Climate-induced mountain tree-line evolution in southern Siberia
[Text] / V. I. Kharuk [et al.] // Scand. J. Forest Res. - 2010. - Vol. 25, Is. 5. - P446-454, DOI 10.1080/02827581.2010.509329. - Cited References: 47. - This research was supported by the NASA Science Mission Directorate, Terrestrial Ecology Program, Siberian Branch Russian Academy of Science Program 23.3.33 and grant MK-2497.2009.5. The authors thank Dr V. Miglan for help with the dendrochronology analysis and Dr Joanne Howl for editing this manuscript. . - 9. - ISSN 0282-7581
РУБ Forestry

Аннотация: The elevational tree-line change within the transitional zone between boreal forest and Mongolian steppes was quantified for the last millennium. The basic approach included studies along transects and measurements of tree-line positions to identify current, historical, refugee and regeneration tree lines. Tree mortality and natality were determined based on dendrochronology analysis. Tree mortality in the sixteenth to eighteenth centuries coincided with the Little Ice Age, while tree establishment was stimulated by warming at the end of nineteenth century. Downward shifts in tree line varied by an order of magnitude. The current tree-line position reoccupied the historical tree line in some transects, and was below or above the historical line in others. The regeneration line surpassed the historical tree line by 91 +/- 46 m (mean +/- SD). Such a heterogeneous response was attributed to local topoclimatic conditions and sapling recruitment efficiency. A mean annual 1 degrees C increase in temperature was associated with an upward shift of the tree line by about 70 m. The upward migration rate of the current tree line was about 0.8 m year-1 during the last century. The regeneration migration rate was about 2.3 m year-1 over the past three decades. Finally, the transformation of krummholz forms of larch and Siberian pine into arborescent form was documented.

Полный текст,
WOS,
Scopus

Держатели документа:
[Kharuk, Vyacheslav I.
Im, Sergey T.
Dvinskaya, Maria L.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Ranson, Kenneth J.] NASAs Goddard Space Flight Ctr, Greenbelt, MD 20771 USA

Доп.точки доступа:
Kharuk, V.I.; Im, S.T.; Dvinskaya, M.L.; Ranson, K.J.

    Lichens on branches of Siberian fir (Abies sibirica Ledeb.) as indicators of atmospheric pollution in forests
[Text] / T. N. Otnyukova, O. P. Sekretenko // Biol. Bull. - 2008. - Vol. 35, Is. 4. - P411-421, DOI 10.1134/S1062359008040146. - Cited References: 48 . - 11. - ISSN 1062-3590
РУБ Biology

Аннотация: The abundance distribution of different ecological groups of lichens depending on bark pH has been studied on 1- to 24-year shoots of Siberian fir in the mountains of southern Siberia. Along with acidophytic lichens commonly found on the Siberian fir (Usnea sp., Bryoria sp., etc.), its young shoots are also colonized by nitrophytic species (Physcia tenella, Melanelia exasperatula, etc.), which is evidence for the increasing pH of shoot bark. The proportion of thalli of nitrophytic lichen species shows a significant positive correlation with the pH of the upper (dusted) bark layer and is greater in the Eastern Sayan (at bark pH averaging 5.4) than in the Western Sayan (pH 4.7). The trends revealed in this study may be used for indication of pollution and ecological monitoring of forest ecosystems.

Полный текст,
WOS,
Scopus

Держатели документа:
[Otnyukova, T. N.
Sekretenko, O. P.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
[Otnyukova, T. N.] Siberian Fed Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Otnyukova, T.N.; Sekretenko, O.P.

    Climate-induced boreal forest change: Predictions versus current observations
[Text] / A. J. Soja [et al.] // Glob. Planet. Change. - 2007. - Vol. 56: 1st Science Session of the Northern-Eurasia-Earth-Science-Partnership-Initiative (NEESPI) held at the 2004 Fall AGU Meeting (DEC 13-17, 2004, San Francisco, CA), Is. 03.04.2013. - P274-296, DOI 10.1016/j.gloplacha.2006.07.028. - Cited References: 167 . - 23. - ISSN 0921-8181
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, 7 of the last 9 yr have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change. (C) 2006 Elsevier B.V. All rights reserved.

Полный текст

Держатели документа:
NASA, Langley Res Ctr, Natl Inst Aerosp, Hampton, VA 23681 USA
Russian Acad Sci, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia
Altarum Inst, Ann Arbor, MI 48113 USA
Canadian Forest Serv, Sault Ste Marie, ON P6A 2E5, Canada
Univ Virginia, Global Environm Change Program, Charlottesville, VA 22903 USA
Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99775 USA
NASA, Langley Res Ctr, Hampton, VA 23681 USA

Доп.точки доступа:
Soja, A.J.; Tchebakova, N.M.; French, NHF; Flannigan, M.D.; Shugart, H.H.; Stocks, B.J.; Sukhinin, A.I.; Parfenova, E.I.; Chapin, F.S.; Stackhouse, P.W.

    Assessing tundra-taiga boundary with multi-sensor satellite data
[Text] / K. J. Ranson [et al.] // Remote Sens. Environ. - 2004. - Vol. 93, Is. 3. - P283-295, DOI 10.1016/j.rse.2004.06.019. - Cited References: 38 . - 13. - ISSN 0034-4257
РУБ Environmental Sciences + Remote Sensing + Imaging Science & Photographic Technology

Аннотация: Monitoring the dynamics of the circumpolar boreal forest (taiga) and Arctic tundra boundary is important for understanding the causes and consequences of changes observed in these areas. This ecotone, the world's largest, stretches for over 13,400 km and marks the transition between the northern limits of forests and the Southern margin of the tundra. Because of the inaccessibility and large extent of this zone, remote sensing data can play an important role for mapping the characteristics and monitoring the dynamics. Basic understanding of the capabilities of existing space borne instruments for these purposes is required. In this study we examined the use of several remote sensing techniques for characterizing the existing tundra-taiga ecotone. These include Landsat-7, MISR, MODIS and RADARSAT data. Historical cover maps, recent forest stand measurements and high-resolution IKONOS images were used for local ground truth. It was found that a tundra-taiga transitional area can be characterized using multi-spectral Landsat ETM+ summer images, multi-angle MISR red band reflectance images, RADARSAT images with larger incidence angle, or multi-temporal and multi-spectral MODIS data. Because of different resolutions and spectral regions covered, the transition zone maps derived from different data types were not identical, but the general patterns were consistent. (C) 2004 Published by Elsevier Inc.

Полный текст,
WOS,
Scopus

Держатели документа:
NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA
Univ Maryland, Dept Geog, College Pk, MD 20742 USA
Academogorodok, VN Sukachev Inst Forest, Krasnoyarsk, Russia
Sci Syst & Applicat Inc, Lanham, MD USA

Доп.точки доступа:
Ranson, K.J.; Sun, G...; Kharuk, V.I.; Kovacs, K...

    Validation of surface height from shuttle radar topography mission using shuttle laser altimeter
[Text] / G. . Sun [et al.] // Remote Sens. Environ. - 2003. - Vol. 88, Is. 4. - P401-411, DOI 10.1016/j.rse.2003.09.001. - Cited References: 28 . - 11. - ISSN 0034-4257
РУБ Environmental Sciences + Remote Sensing + Imaging Science & Photographic Technology

Аннотация: Spaceborne Interferometric SAR (InSAR) technology used in the Shuttle Radar Topography Mission (SRTM) and spaceborne lidar such as Shuttle Laser Altimeter-02 (SLA-02) are two promising technologies for providing global scale digital elevation models (DEMs). Each type of these systems has limitations that affect the accuracy or extent of coverage. These systems are complementary in developing DEM data. In this study, surface height measured independently by SRTM and SLA-02 was cross-validated. SLA data was first verified by field observations, and examinations of individual lidar waveforms. The geolocation accuracy of the SLA height data sets was examined by checking the correlation between the SLA surface height with SRTM height at 90 in resolution, while shifting the SLA ground track within its specified horizontal errors. It was found that the heights from the two instruments were highly correlated along the SLA ground track, and shifting the positions did not improve the correlation significantly. Absolute surface heights from SRTM and SLA referenced to the same horizontal and vertical datum (World Geodetic System (WGS) 84 Ellipsoid) were compared. The effects of forest cover and surface slope on the height difference were also examined. After removing the forest effect on SRTM height, the mean height difference with SLA-02 was near zero. It can be further inferred from the standard deviation of the height differences that the absolute accuracy of SRTM height at low vegetation area is better than the SRTM mission specifications (16 in). The SRTM height bias caused by forest cover needs to be further examined using future spaceborne lidar (e.g. GLAS) data. (C) 2003 Elsevier Inc. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
Univ Maryland, Dept Geog, College Pk, MD 20742 USA
NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
VN Sukachev Inst Forest, Krasnoyarsk, Russia
Sci Syst & Applicat Inc, Lanham, MD 20706 USA

Доп.точки доступа:
Sun, G...; Ranson, K.J.; Khairuk, V.I.; Kovacs, K...

    Mapping of Siberian forest landscapes along the Yenisey transect with AVHRR
[Text] / V. I. Kharuk [et al.] // Int. J. Remote Sens. - 2003. - Vol. 24, Is. 1. - P23-37, DOI 10.1080/0143116021000021143. - Cited References: 30 . - 15. - ISSN 0143-1161
РУБ Remote Sensing + Imaging Science & Photographic Technology

Аннотация: In this paper NOAA AVHRR data acquired at the Sukachev Institute of Forest in Siberia, Russia is evaluated for forest management mapping applications. First a classification of the entire 1000 km x 3000 km transect was performed, but was found to be too general to be of value. More useful interpretation procedures require a landscape-ecological approach. This means that computer classification should be made separately for segments of territory based ecologically distinct regions. This segmentation of the transect into ecological regions was found to improve the level of detail available in the classification. Using this approach AVHRR data were found to be adequate for small scale mapping at the level of vegetation types or plant formations. A limited study using AVHRR data for classification of mountainous regions showed that AVHRR-derived maps were more detailed than existing landscape maps. AVHRR derived classifications also compared favourably to larger scale forest management maps of softwood and hardwood forests. Current forest management in Siberia relies on very small-scale inventory maps. Thus, there is a potential role for AVHRR (or Terra) data for northern Siberian forest monitoring. The southern forests of the Yenisey meridian (below the 57th parallel) are less uniform due to considerable human activity, and NOAA/AVHRR data will play a subordinate role in its monitoring.

Полный текст,
WOS,
Scopus

Держатели документа:
Sukachev Inst Forest, Krasnoyarsk, Russia
NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA

Доп.точки доступа:
Kharuk, V.I.; Ranson, K.J.; Burenina, T.A.; Fedotova, E.V.

    Wildfire in Russian boreal forests - Potential impacts of fire regime characteristics on emissions and global carbon balance estimates
[Text] / S. G. Conard, G. A. Ivanova // Environ. Pollut. - 1997. - Vol. 98, Is. 3. - P305-313, DOI 10.1016/S0269-7491(97)00140-1. - Cited References: 41 . - 9. - ISSN 0269-7491
РУБ Environmental Sciences
Рубрики:
VEGETATION
   ATMOSPHERE

   DIOXIDE

   BIOMASS

   CLIMATE

   CANADA

Кл.слова (ненормированные):
Russia -- boreal forests -- fires -- carbon balance

Аннотация: Most of the research about the effects of the release of carbon and other chemicals to the atmosphere during forest fir es focuses on emissions from crown fires or slash fires in which a high percentage of the fine fuels are burned However, in many temper-ate and boreal conifer ecosystems, surface fires of varying intensities and severities are an important part of the fire regime. In Russia a large percentage of the area burned in a typical year is in surface fires, which will result in lower carbon emissions than crown fires because of lower fuel consumption. lit Russian boreal for est, different distribution patterns of fire severity across the landscape could produce fourfold differences in carbon release. Furthermore, tree mortality after surface fires is often quite extensive, leading to a pulse in carbon release as needles and other fine fuels fall to the ground and decompose. With extensive tree mortality a decrease in carbon sequestration is expected for several years, until stand level photosynthesis returns to prefire levels. Perhaps the largest potential source of error in estimates of carbon release from biomass fires in Russia is inaccuracy in estimates of burned area. Many published estimates of annual burned area in Russia may be extremely low. On the basis of information on fire return intervals and area of boreal forest, 12 million ha per year may be a reasonable conservative estimate of burned area until better data are available. Based on this estimate, direct and indirect fire-generated carbon emissions from boreal forests worldwide may exceed 20% of the estimated global emissions from biomass burning, making them an important component in understanding global atmospheric chemistry. In considering effects of fire an global atmospheric chemistry, it is important to include the effects of fire severity, postfire mortality, decomposition of fine fuels, and changing postfire vegetation structure as components of fire-induced changes in ecosystem-level carbon flux. But the most important factor may be accurate information on the annual area burned. Levels of carbon storage are likely to be highly sensitive to changes in fire return intervals that result from direct human activities and from climatic changes, making accurate assessments of burned areas and fire severity critical. Strong fire management programs will be key to managing future fire regimes and carbon cycling in Russia's boreal forest. Published by Elsevier Science Ltd.

Полный текст,
WOS,
Scopus

Держатели документа:
US Forest Serv, Washington, DC 20250 USA
Russian Acad Sci, Sukachev Forest Inst, Akademgorodok 660036, Krasnoyarsk, Russia

Доп.точки доступа:
Conard, S.G.; Ivanova, G.A.

    Spring in the boreal environment: observations on pre- and post-melt energy and CO2 fluxes in two central Siberian ecosystems
[Text] / A. . Arneth [et al.] // Boreal Environ. Res. - 2006. - Vol. 11, Is. 4. - P311-328. - Cited References: 79 . - 18. - ISSN 1239-6095
РУБ Environmental Sciences

Аннотация: A range of observations points towards earlier onset of spring in northern high latitudes. However, despite the profound effects this may have on vegetation-atmosphere exchange of carbon (NEE), vegetation-atmosphere physical coupling, or the location of the tundra-taiga interface, the number of studies that investigate winter-spring transition fluxes in contrasting northern vegetation types is limited. Here, we examine spring ecosystem-atmosphere energy and carbon exchange in a Siberian pine forest and mire. Divergent surface albedo before and during snow-melt resulted in daytime net radiation (R-n) above the forest exceeding R. above the mire by up to 10 MJ m(-2). Until stomata could open, absorbed radiation by the green pine canopy caused substantial daytime sensible heat fluxes (H 10 MJ m(-2)). H above the mire was very low, even negative (-2 MJ M-2), during that same period. Physiological activity in both ecosystems responded rapidly to warming temperatures and snow-melt, which is essential for survival in Siberia with its very short summers. On days with above-zero temperatures, before melt. was complete, low rates of forest photosynthesis (1-2 mu mol m(-2) s(-1)) were discernible. Forest and mire NEE became negative the same day, or shortly after, photosynthesis commenced. The mire lagged by about two weeks behind the forest and regained its full carbon uptake capacity at a slower rate. Our data provide empirical evidence for the importance the timing of spring and the relative proportion of forest vs. mire has for late winter/spring boundary-layer growth, and production and surface-atmosphere mixing of trace gases. Models that seek to investigate effects of increasingly earlier spring in high latitudes must correctly account for contrasting physical and biogeochemical ecosystem-atmosphere exchange in heterogeneous landscapes.

WOS,
Scopus

Держатели документа:
Lund Univ, Dept Phys Geog & Ecolsyst Anal, SE-22363 Lund, Sweden
Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England
VN Sukachev Forest Inst, Krasnoyarsk 660036, Russia
Univ Helsinki, Dept Phys Sci, FI-00014 Helsinki, Finland
Max Planck Inst Biogeochem, D-07701 Jena, Germany

Доп.точки доступа:
Arneth, A...; Lloyd, J...; Shibistova, O...; Sogachev, A...; Kolle, O...

    Satellite-derived 2003 wildfires in southern Siberia and their potential influence on carbon sequestration
[Text] / S. . Huang [et al.] // Int. J. Remote Sens. - 2009. - Vol. 30, Is. 6. - P1479-1492, DOI 10.1080/01431160802541549. - Cited References: 37. - We thank the European Space Agency Centre for Earth Observation (ESA-ESRIN) for financial support and data provision, and the Max Planck Institute for Chemistry/Global Fire Monitoring Centre for funding aerial and ground surveys in the Transbaikal region. Special thanks to Dr Robert Crabtree for his support on finishing the manuscript, Mr Shawn Gray for improving the English and Mr Alan Swanson for helping with the statistical analysis. . - 14. - ISSN 0143-1161
РУБ Remote Sensing + Imaging Science & Photographic Technology

Аннотация: The burned area, fuel type, crown fire percentage, and carbon release of the southern Siberia 2003 wildfire were analysed using AVHRR, MODIS, MERIS, ASTER images and a carbon release model. More than 200 000 km2 were burned from 14 March to 8 August 2003, of which 71.4% was forest, 9.5% humid grassland, and 2.15% bogs or marshes. During 1996 to 2003, 32.2% of the forested area and 23.36% of the total area was burned, and 13.9% of the total area was affected by fire at least twice. Direct carbon emission from this 2003 fire was around 400640 Tg. The 2003 Siberian fires could well have contributed to the high increase of the atmospheric CO2 and CO concentration in 2003. The increasing human pressure coupled with intensive fire severity, recurrent fire frequency, and increasing occurrence of summer droughts will reduce the carbon sequestration potential of this important carbon pool.

Полный текст,
WOS,
Scopus

Держатели документа:
[Huang, S.] Univ Munich, GeoBio Ctr, Munich, Germany
[Siegert, F.] Remote Sensing Solut GmbH, Munich, Germany
[Goldammer, J. G.] Univ Freiburg, Max Planck Inst Chem, Biogeochem Dept, Fire Ecol Res Grp,Global Fire Monitoring Ctr, Freiburg, Germany
[Sukhinin, A. I.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk, Russia

Доп.точки доступа:
Huang, S...; Siegert, F...; Goldammer, J.G.; Sukhinin, A.I.; European Space Agency Centre for Earth Observation (ESA-ESRIN); Max Planck Institute for Chemistry/Global Fire Monitoring Centre

    Response of Pinus sibirica and Larix sibirica to climate change in southern Siberian alpine forest-tundra ecotone
[Text] / V. I. Kharuk [et al.] // Scand. J. Forest Res. - 2009. - Vol. 24, Is. 2. - P130-139, DOI 10.1080/02827580902845823. - Cited References: 42. - This research was supported in part by the NASA Science Mission Directorate, Terrestrial Ecology and Cryospheric Sciences Programs and Russian Fund for Fundamental Investigations No. 06-05-64939. Special thanks to Joanne Howl, DVM, for assisting with final preparation of the manuscript. . - 10. - ISSN 0282-7581
РУБ Forestry

Аннотация: A warming climate provides competitive advantages to Siberian pine (Pinus sibirica Du Tour) in areas with sufficient precipitation. The warmer temperatures observed in central Siberia over the past three decades appear to have had a noticeable effect on growth of Siberian pine and larch (Larix sibirica Ledeb.) in the south Siberian Mountain forest-tundra ecotone. Larch is more tolerant of harsh climates and exhibits an arboreal growth form, whereas Siberian pine is in krummholz form. Larch also has an advantage at the upper tree limit and in areas with low precipitation. Since the mid-1980s there have been measurable increases in growth increments, stand densification, regeneration propagation into the alpine tundra and transformation of krummholz into arboreal forms. Warming winter temperatures have been sufficient for increased survival of regeneration. Regeneration responded to temperature increase of 1C by migration to areas 10-40 m higher in elevation. Regeneration has propagated into the alpine tundra at the rate of similar to 1.0-2.0 m year-1. Siberian pine and larch regeneration surpassed their upper historical limit by 10-80 m in elevation. While increased tree growth and migration into alpine tundra areas affect the regional carbon balance, it will also decrease albedo, which may increase warming at the regional level.

Полный текст,
WOS,
Scopus

Держатели документа:
[Kharuk, Viacheslav I.
Im, Sergey T.
Dvinskaya, Maria L.] VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Ranson, Kenneth J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA

Доп.точки доступа:
Kharuk, V.I.; Ranson, K.J.; Im, S.T.; Dvinskaya, M.L.; Terrestrial Ecology and Cryospheric Sciences Programs and Russian Fund for Fundamental Investigations [06-05-64939]

    Growth coherency and climate sensitivity of Larix sibirica at the upper treeline in the Russian Altai-Sayan Mountains
/ A. V. Taynik [et al.] // Dendrochronologia. - 2016. - Vol. 39: Workshop on Current Status and the Potential of Tree-Ring Research in (JAN 20-21, 2015, Krasnoyarsk, RUSSIA). - P10-16, DOI 10.1016/j.dendro.2015.12.003. - Cited References:38 . - ISSN 1125-7865. - ISSN 1612-0051
РУБ Plant Sciences + Forestry + Geography, Physical

Аннотация: Tree-ring research in the Altai-Sayan Mountains so far only considered a limited number of well replicated site chronologies. The dendroecological and palaeoclimatological potential and limitations of large parts of south-central Russia therefore remain rather unexplored. Here, we present a newly updated network of 13 larch (Larix sibirica Ldb.) tree-ring width (TRW) chronologies from mid to higher elevations along a nearly 1000 km west-to-east transect across the greater Altai-Sayan region. All data were sampled between 2009 and 2014. The corresponding site chronologies cover periods from 440 to 860 years. The highest TRW agreement is found between chronologies >= 2200 m asl, whereas the material from lower elevations reveals overall less synchronized interannual to longer-term growth variability. While fluctuations in average June July temperature predominantly contribute to the growth at higher elevations, arid air masses from Mongolia mainly affect TRW formation at lower elevations. Our results are indicative for the dendroclimatological potential of the Altai-Sayan Mountains, where both, variation in summer temperature and hydroclimate can be robustly reconstructed back in time. These findings are valid for a huge region in central Asia where reliable meteorological observations are spatially scarce and temporally restricted to the second half of the 20th century. The development of new high-resolution climate reconstruction over several centuries to millennia will further appear beneficial for timely endeavors at the interface of archaeology, climatology and history. (C) 2015 Elsevier GmbH. All rights reserved.

WOS,
Смотреть статью

Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia.
Tuva State Univ, Kyzyl 667000, Republic Of Tuv, Russia.
Swiss Fed Res Inst WSL, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland.

Доп.точки доступа:
Taynik, Anna V.; Barinov, Valentin V.; Oidupaa, Orlan Ch.; Myglan, Vladimir S.; Reinig, Frederick; Buntgen, Ulf

    Forest Pyrogenic Peat Soils and Gleyzems in Swampy Mountain Valleys in the South of Yenisei Siberia
/ T. T. Efremova, A. V. Pimenov, S. P. Efremov, A. F. Avrova // Eurasian Soil Sci. - 2021. - Vol. 54, Is. 7. - P975-985, DOI 10.1134/S1064229321070036. - Cited References:48 . - ISSN 1064-2293. - ISSN 1556-195X
РУБ Soil Science

Аннотация: The differences between eutrophic peat soils (Hypereutric Sapric Histosols) and peaty gleyzems (Eutric Histic Gleysols) 20 years after a forest-peat fire have been studied by the example of a spruce forest in a swampy river valley of the Kuznetsk Alatau (622 m a.s.l.). Soils with peat and peaty horizons are characterized by high variability of properties (Cv 25-33%). The ash content varies from 23 to 81%; pH, from 5.8 to 8.2; bulk density, from 0.094 to 0.494 g/cm(3); C-org content, from 7 to 37%; and the volumetric water content of peat soil, from 31 to 85%. Four groups of pyrogenic peat soils have been objectively identified based on statistical parameters. The organic carbon content has the maximum ability to differentiate clusters (93%). A much smaller proportion of the difference is provided by the moisture of peat soil (6%). Soil clusters identified at the taxonomic level of the species as peat, peaty gleyzems, shallow peaty gleyzems, and destructive soils identify the soil cover pattern of the fire area. New information complements and clarifies the data on carbon losses, which are estimating mainly by the depth of burning of the peat layer. The value of additional losses within the 0-20 cm layer is 0.4-6.3 kg C/m(2) depending on the intensity of pyrogenic effects, being equivalent to carbon dioxide emissions from 1.4 to 23 kg/m(2).

WOS

Держатели документа:
Russian Acad Sci, Krasnoyarsk Sci Ctr, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Efremova, T. T.; Pimenov, A. V.; Efremov, S. P.; Avrova, A. F.

    Experience in Assessing the Impact of Forest-Peat Fires on the Hydrochemical Properties of Eutrophic Swamps
/ T. T. Efremova, A. V. Pimenov, S. P. Efremov [et al.] // Biol. Bull. - 2021. - Vol. 48, Is. 5. - P616-625, DOI 10.1134/S1062359021050071. - Cited References:32 . - ISSN 1062-3590. - ISSN 1608-3059
РУБ Biology

Аннотация: For the first time, using the example of a key object of the peat river valleys of the Kuznetsk Alatau occupied by spruce forests, it is shown that swamp waters are clearly differentiated by the content of the main ions due to forest-peat fires. Swamp waters objectively form three groups: (1) waters of the original type of mineral nutrition (fresh, soft), (2) waters of peatland covered by a medium fire (fresh, hard), (3) waters of peatland covered by a high fire (slightly saline, very hard). Magnesium ions and bicarbonates have the highest discriminating power (95%) in the determination of swamp waters. The swamp waters of the post-pyrogenic peatland do not lose the ratio of the main ions, which is similar to waters of the original type, and retain the hydro-carbonate calcium-magnesium composition.

WOS

Держатели документа:
Russian Acad Sci, Fed Res Ctr Krasnoyarsk Sci Ctr SB RAS, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Efremova, T. T.; Pimenov, A., V; Efremov, S. P.; Avrova, A. F.; Efimov, D. Yu

    Phenological shifts compensate warming-induced drought stress in southern Siberian Scots pines
/ A. Arzac, I. Tychkov, A. Rubtsov [et al.] // Eur. J. For. Res. - 2021, DOI 10.1007/s10342-021-01412-w. - Cited References:78. - This work was carried out with the support of Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0014] and the Russian Science Foundation [Grant 18-74-10048]. We are indebted with E. Martinez for his assistance on field and samples preparation and with the two National Parks and research station for allowing access to their territory. A previous version was revised by JM Olano. We thank to the anonymous reviewers for their comments and suggestions, which significantly improved the manuscript. . - Article in press. - ISSN 1612-4669. - ISSN 1612-4677
РУБ Forestry

Аннотация: Global climate change impacts the functioning and productivity of forest ecosystems at various spatiotemporal scales across a wide range of biomes. Although summer temperatures are considered the main driver of boreal tree growth, the importance of soil moisture availability is likely to rise with decreasing latitude and increasing warming. Here, we combine dendrochronological measurements with evidence from tree growth modeling and remote sensing to quantify the effect of climate on phenology and productivity of Scots pines (Pinus sylvestris L.) in southern Siberia. Between 1960 and 2017, pine ring widths along a latitudinal transect from 53 degrees to 56 degrees N were mainly controlled by the availability of summer soil moisture. This finding challenges the common belief that summer temperatures are the predominant growth control in boreal forests. Moreover, we show that earlier growing season onsets can compensate for warming-induced drought stress. Despite the phenotypic plasticity of Scots pines to adapt to warmer and drier conditions, we speculate that predicted climate change will likely exceed the species' physiological tolerance in much of Eurasia's forest-steppe by the end of the twenty-first century.

WOS

Держатели документа:
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.
SB RAS, Krasnoyarsk Sci Ctr, VN Sukachev Inst Forest, Fed Res Ctr, Akademgorodok 50-28, Krasnoyarsk 660036, Russia.
Natl Pk Krasnoyarsk Stolby, Krasnoyarsk, Russia.
Univ Cambridge, Dept Geog, Cambridge CB2 3EN, England.
Swiss Fed Res Inst WSL, CH-8903 Birmensdorf, Switzerland.
Global Change Res Ctr CzechGlobe, Brno 60300, Czech Republic.
Masaryk Univ, Fac Sci, Dept Geog, Brno 61300, Czech Republic.

Доп.точки доступа:
Arzac, Alberto; Tychkov, Ivan; Rubtsov, Alexey; Tabakova, Maria A.; Brezhnev, Ruslan; Koshurnikova, Natalia; Knorre, Anastasia; Buntgen, Ulf; Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0014]; Russian Science FoundationRussian Science Foundation (RSF) [18-74-10048]

    Spatiotemporal Structure and Dynamics of the Late Succession Stage of Taiga Cedar Pine of the Western Sayan Mountains
/ D. M. Danilina, D. I. Nazimova, M. E. Konovalova // Contemp. Probl. Ecol. - 2021. - Vol. 14, Is. 7. - P750-759, DOI 10.1134/S1995425521070064. - Cited References:31. - This study was held within the framework of the State Contract of the FRS KSC RAS (0356-2019-0024), and with the financial support from the RFBR (18-05-00781.). . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology

Аннотация: The results of stationary studies (1965-2017) on the regularities of the dynamics of the spatial structure of old-growth, cedar-pine forests are shown on the example of a natural-growth, cedar-pine sedge-tall herb-fern forest of the late succession stage (Western Sayan, 53 degrees 01 ' N, 92 degrees 59 ' E, individual test site area of 1.56 ha). It was found that a dynamic balance has been maintained in the structure of the edificator layer for a period of 50 years, while the subedificator layer (fir) has undergone more rapid changes in age structure and affects the relations between the synusiae of lower layer and their role in the regrowth of cedar pine (Pinus sibirica (Du Tour) and Siberian fir (Abies sibirica (Ledeb.). Each synusia is characterised by a relatively constant number of species, dominant-species structure, and ratio of ecocoenotic groups. Tall herb-fern, calamagrostis-dryopteris, aconite-sedge, sedge and oxalis synusiae of different complexities remain the constant structural elements of this type of forest. The roles of the individual herbaceous synusia in cedar pine regrowth have been shown for the tall grass-fern group of forest types. Cedar-pine regrowth is slow in the dominant tall grass-fern synusia and occurs mostly on microrelief, at sites of windfall and fallen trees. Conversely, the competition with the grass is lower in the sedge synusia, and periodical outbreaks of cedar-pine regrowth occur in years of high productivity. However, the probability of seedlings' further survival is low due to competition with the parent trees. The results allow the prediction of the age dynamics of a natural-growth cedar pine forest for the next several decades, under the assumption of climate and weather trends that are typical for the latter century cycle and are without any catastrophic changes. The diversity of microtypes and synusiae supports the sustainability of the entire mountain ecosystem and will play an important role in the modeling of the regrowth and spatial distribution of individual trees during the later stages of fir-cedar pine forest development in the taiga zone of the Sayan mountains.

WOS

Держатели документа:
Russian Acad Sci, Forest Inst, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Danilina, D. M.; Nazimova, D., I; Konovalova, M. E.; FRS KSC RAS [0356-2019-0024]; RFBRRussian Foundation for Basic Research (RFBR) [18-05-00781]

    Evidence that modern fires may be unprecedented during the last 3400 years in permafrost zone of Central Siberia, Russia
/ E. Y. Novenko, D. A. Kupryanov, N. G. Mazei [et al.] // Environ. Res. Lett. - 2022. - Vol. 17, Is. 2. - Ст. 025004, DOI 10.1088/1748-9326/ac4b53. - Cited References:48. - Field work and macroscopic charcoal analysis in the Putorana Plateau and Tura area were supported by the project 'Holocene climate and environmental records from the Central Siberian Plateau' funded by the Swiss Polar Institute. Field work and macroscopic charcoal analysis in Igarka area, data analysis and paper preparation were supported by Russian Science Foundation, Project 20-17-00043. . - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Recent climate change in Siberia is increasing the probability of dangerous forest fires. The development of effective measures to mitigate and prevent fires is impossible without an understanding of long-term fire dynamics. This paper presents the first multi-site palaeo-fire reconstruction based on macroscopic charcoal data from peat and lake sediment cores located in different landscapes across the permafrost area of central Siberia. The obtained results show similar temporal patterns of charcoal accumulation rates in the cores under study, and near synchronous changes in fire regimes. The paleo-fire record revealed moderate biomass burning between 3.4 and 2.6 ka BP, followed by the period of lower burning occurring from 2.6 to 1.7 ka BP that coincided with regional climate cooling and moistening. Minimal fire activity was also observed during the Little Ice Age (0.7-0.25 ka BP). Fire frequencies increased during the interval from 1.7 to 0.7 ka BP and appears to be partly synchronous with climate warming during the Medieval Climate Anomaly. Regional reconstructions of long-term fire history show that recent fires are unprecedented during the late Holocene, with modern high biomass burning lying outside millennial and centennial variability of the last 3400 years.

WOS

Держатели документа:
Lomonosov Moscow State Univ, Fac Geog, Dept Phys Geog & Landscape Sci, Moscow, Russia.
Russian Acad Sci, Dept Quaternary Res, Inst Geog, Moscow, Russia.
Krasnoyarsk Sci Ctr SB RAS, Sukachev Inst Forest SB RAS, Fed Res Ctr, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland.
Univ Lausanne, Inst Earth Surface Dynam, Lausanne, Switzerland.
HSE Univ, Fac Geog & Geoinformat Technol, Moscow, Russia.

Доп.точки доступа:
Novenko, Elena Yu; Kupryanov, Dmitry A.; Mazei, Natalia G.; Prokushkin, Anatoly S.; Phelps, Leanne N.; Buri, Aline; Davis, Basil A. S.; Swiss Polar Institute; Russian Science FoundationRussian Science Foundation (RSF) [20-17-00043]