Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 7

    Fire return intervals within the northern boundary of the larch forest in Central Siberia
/ V. I. Kharuk, M. L. Dvinskaya, K. J. Ranson // Int. J. Wildland Fire. - 2013. - Vol. 22, Is. 2. - P207-211, DOI 10.1071/WF11181. - Cited References: 28. - This research was supported by the SB RAS Program Number 27.33, and NASA Science Mission Directorate, Terrestrial Ecology Program. The authors thank Dr Joanne Howl for editing the manuscript. . - 5. - ISSN 1049-8001
РУБ Forestry

Аннотация: A fire history of northern larch forests was studied. These larch forests are found near the northern limit of their range at similar to 71 degrees N, where fires are predominantly caused by lightning strikes rather than human activity. Fire-return intervals (FRIs) were calculated based on fire scars and dates of tree natality. Tree natality was used as an approximation of the date of the last fire. The average FRI was found to be 295 +/- 57 years, which is the longest reported for larch-dominated stands. Prior studies reported 80-90-year FRIs at 64 degrees N and similar to 200 years near the latitude of the Arctic Circle. Comparing data from fires that occurred in 1700-1849 (end of the Little Ice Age, LIA) and 1850-1999 (post-LIA warming) indicates approximately twice as many fires occurred during the latter period. This agrees with the hypothesis that observed climatic warming will result in an increase in fire frequency. Our results also indicate that fires that did not leave visible fire scars on the tree stem may be identified based on the date of growth release revealed from dendrochronology.

WOS,
Scopus

Держатели документа:
[Kharuk, Vyacheslav I.
Dvinskaya, Mariya L.] Siberian Fed Univ, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Ranson, K. Jon] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA

Доп.точки доступа:
Kharuk, V.I.; Dvinskaya, M.L.; Ranson, K.J.

    The Content of Organic Carbon and Its Water-Soluble Fraction in the Soils of Central Evenkia's Post-Fire Larch Associations
[Text] / I. V. Tokareva, A. S. Prokushkin, V. V. Bogdanov // Contemp. Probl. Ecol. - 2011. - Vol. 4, Is. 5. - P462-468, DOI 10.1134/S199542551105002X. - Cited References: 28. - The work was carried out with financial support of KSAU 'Krasnoyarsk Regional Foundation for Support of Scientific and Scientific and Technical Activities' and RFBR grant no. 10-05-92513. . - 7. - ISSN 1995-4255
РУБ Ecology

Аннотация: The peculiarities of organic carbon water soluble fraction content in the litters and soil profile in burned forests of different age under the cryolithozone conditions have been revealed. It has been shown that surface fires cause a decrease in the content of water-extractable organic carbon (WEOC) in the litters and upper 5 cm deep layer of soil. At the same time in microelevations these differences are more pronounced and the WEOC content in the upper organogenic horizons in burnt-out places is 2 times lower. In the deeper soil horizons there have been no differences detected in the WEOC content between intact plantations and postpyrogenic areas.

Полный текст,
WOS,
Scopus

Держатели документа:
[Tokareva, I. V.
Prokushkin, A. S.
Bogdanov, V. V.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Tokareva, I.V.; Prokushkin, A.S.; Bogdanov, V.V.

    Post-fire transformation of the microbial complexes in soils of larch forests in the lower Angara River region
[Text] / A. V. Bogorodskaya, G. A. Ivanova, P. A. Tarasov // Eurasian Soil Sci. - 2011. - Vol. 44, Is. 1. - P49-55, DOI 10.1134/S1064229310071014. - Cited References: 36. - This work was supported by the Russian Foundation for Basic Research (project no. 07-04-00562) and by the International Science and Technology Center (project no. 3695). . - 7. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The postfire transformation of the functional activity of the microbial cenoses and the main soil properties under mixed larch forests were studied in the lower reaches of the Angara River. It was shown that the intensity of the postfire changes in the population density, biomass, and activity of the microorganisms in the dark podzolized brown forest soil depended on the degree of burning of the ground cover and the surface litter during the fire. The maximum effects of the fire on the microbial cenoses were observed in the litter and the upper 5-cm-thick layer of the dark-humus horizon in the areas of intense burning. The postfire restoration of the structural-functional activity of the microbial cenoses was determined by the degree of transformation of soil properties and by the postpyrogenic succession in the ground cover. The microbial complexes of the dark podzolized brown forest soils under mixed larch forests in the studied region restored their functional activity after the fires of different intensities quicker than the microbial cenoses of the sandy podzols in the pyrogenic lichen-green-moss pine forests of the same zone.

Полный текст,
WOS,
Scopus

Держатели документа:
[Bogorodskaya, A. V.
Ivanova, G. A.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia
[Tarasov, P. A.] Siberian State Technol Univ, Krasnoyarsk 660049, Russia

Доп.точки доступа:
Bogorodskaya, A.V.; Ivanova, G.A.; Tarasov, P.A.

    Declining fires in Larix-dominated forests in northern Irkutsk district
[Text] / T. . Wallenius [et al.] // Int. J. Wildland Fire. - 2011. - Vol. 20, Is. 2. - P248-254, DOI 10.1071/WF10020. - Cited References: 43. - Aleksey Sadvordaev, Galina Zrazhevskaya, Toivo Haltia and Antti Lavikainen helped with the challenging arrangements and the field work. Oskar Ofluds Stiftelse, Nordenskiolds Samfundet and Ulla Wallenius funded the expedition to central Siberia. The Maj and Tor Nessling Foundation (grant number 2003064), Emil Aaltonen Foundation and Finnish Academy (grant number 121919) financed this long-duration study from field work to publication. . - 7. - ISSN 1049-8001
РУБ Forestry

Аннотация: To study the poorly known fire history of Larix-dominated forest in central Siberia, we collected samples from 200 trees in 46 systematically located study plots. Our study area stretches similar to 90 km from north to south along the River Nizhnyaya Tunguska in northern Irkustk district. Cross-dated tree-ring chronology for all samples combined extended from the year 1360 AD to the present and included 76 fire years and 88 separate fire events. Average fire cycle gradually lengthened from 52 years in the 18th century to 164 years in the 20th century. During the same time, the number of recorded fires decreased even more steeply, i.e. by more than 85%. Fires were more numerous but smaller in the past. Contrary to expectations, climate change in the 20th century has not resulted in increased forest fires in this region. Fire suppression may have contributed to the scarcity of fires since the 1950s. However, a significant decline in fires was evident earlier; therefore an additional explanation is required, a reduction in human-caused ignitions being likely in the light of historical accounts.

WOS,
Scopus

Держатели документа:
[Wallenius, Tuomo
Heikkinen, Juha] Finnish Forest Res Inst, Vantaa Res Unit, FI-01301 Vantaa, Finland
[Larjavaara, Markku] Smithsonian Trop Res Inst, Balboa, Ancon, Panama
[Shibistova, Olga] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Wallenius, T...; Larjavaara, M...; Heikkinen, J...; Shibistova, O...

    Estimating fire emissions and disparities in boreal Siberia (1998-2002)
[Text] / A. J. Soja [et al.] // J. Geophys. Res.-Atmos. - 2004. - Vol. 109, Is. D14. - Ст. D14S06, DOI 10.1029/2004JD004570. - Cited References: 126 . - 25. - ISSN 2169-897X
РУБ Meteorology & Atmospheric Sciences

Аннотация: [ 1] In the biomass, soils, and peatlands of Siberia, boreal Russia holds one of the largest pools of terrestrial carbon. Because Siberia is located where some of the largest temperature increases are expected to occur under current climate change scenarios, stored carbon has the potential to be released with associated changes in fire regimes. Our concentration is on estimating a wide range of current and potential emissions from Siberia on the basis of three modeled scenarios. An area burned product of Siberia is introduced, which spans from 1998 through 2002. Emissions models are spatially explicit; therefore area burned is extracted from associated ecoregions for each year. Carbon consumption estimates are presented for 23 unique ecoregions across Siberia, which range from 3.4 to 75.4 t C ha(-1) for three classes of severity. Total direct carbon emissions range from the traditional scenario estimate of 116 Tg C in 1999 (6.9 M ha burned) to the extreme scenario estimate of 520 Tg C in 2002 (11.2 M ha burned), which are equivalent to 5 and 20%, respectively, of total global carbon emissions from forest and grassland burning. Our results suggest that disparities in the amount of carbon stored in unique ecosystems and the severity of fire events can affect total direct carbon emissions by as much as 50%. Additionally, in extreme fire years, total direct carbon emissions can be 37 - 41% greater than in normal fire years, owing to increased soil organic matter consumption. Mean standard scenario estimates of CO2 ( 555 - 1031 Tg), CO ( 43 - 80 Tg), CH4 (2.4 - 4.5 Tg), TNMHC (2.2 - 4.1 Tg), and carbonaceous aerosols (4.6 - 8.6 Tg) represent 10, 15, 19, 12 and 26%, respectively, of the global estimates from forest and grassland burning. Accounting for smoldering combustion in soils and peatlands results in increases in CO, CH4, and TNMHC and decreases in CO2 emitted from fire events.

WOS

Держатели документа:
Terra Syst Res Inc, Williamsburg, VA 23185 USA
US Forest Serv, USDA, Arlington, VA 22209 USA
Nat Resources Canada, Great Lakes Forestry Ctr, Sault Ste Marie, ON P6A 2E5, Canada
Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA
Russian Acad Sci, Sukachev Forest Inst, Krasnoyarsk 660036, Russia
NASA, Langley Res Ctr, Hampton, VA 23681 USA

Доп.точки доступа:
Soja, A.J.; Cofer, W.R.; Shugart, H.H.; Sukhinin, A.I.; Stackhouse, P.W.; McRae, D.J.; Conard, S.G.

    AVHRR-derived fire frequency, distribution and area burned in Siberia
[Text] / A. J. Soja [et al.] // Int. J. Remote Sens. - 2004. - Vol. 25, Is. 10. - P1939-1960, DOI 10.1080/01431160310001609725. - Cited References: 70 . - 22. - ISSN 0143-1161
РУБ Remote Sensing + Imaging Science & Photographic Technology

Аннотация: Advanced Very High Resolution Radiometer (AVHRR) data are used to produce an active-fire detection product for the fire season in 1999 and 2000 and an area burned product for 1996-2000. The distribution of fire is presented ranging from the Urals in the west to the eastern coast and from the semi-dry steppe regions in the south through the taiga in the north. A temporal and spatial pattern of fire is observed migrating from north of 40degrees N latitude in April to north of 60degrees N by mid-July. Fire is widespread in August, spanning the entire geographic range. In contrast to these patterns, no similar east-west migrations are discernible from these data. Peak active-fire counts are detected in early May between 50 and 55degrees N latitude in both 1999 and 2000. Wildfire in Russia is highly variable, both annually and interannually, with differences in reported area burned ranging from 0.234 to 13.3 million hectares per year. Comparing Russian fire statistics to satellite-based data from this investigation and previous works, we find area burned in Russia may be commonly underestimated by an average of 213%. Underestimates of this magnitude could strongly affect emissions estimates and climate change research.

Полный текст,
WOS

Держатели документа:
Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA
Russian Acad Sci, Sukachev Forest Inst, Krasnoyarsk 660036, Russia
Terra Syst Res, Williamsburg, VA 23185 USA
NASA, Langley Res Ctr, Hampton, VA 23681 USA

Доп.точки доступа:
Soja, A.J.; Sukhinin, A.I.; Cahoon, D.R.; Shugart, H.H.; Stackhouse, P.W.

    Post fire organic matter biodegradation in permafrost soils: Case study after experimental heating of mineral horizons
/ O. V. Masyagina, I. V. Tokareva, A. S. Prokushkin // Sci. Total Environ. - 2016. - Vol. 573. - P1255-1264, DOI 10.1016/j.scitotenv.2016.04.195. - Cited References:52. - The reported study was partially supported by the Russian Science Foundation (14-24-00113). . - ISSN 0048-9697. - ISSN 1879-1026
РУБ Environmental Sciences

Аннотация: Periodical ground fires of high frequency in permafrost forest ecosystems of Siberia (Russian Federation) are essential factors determining quantitative and qualitative parameters of permafrost soil organic matter. Specific changes in physical and chemical parameters and microbial activity of permafrost soil mineral horizons of northern taiga larch stands were revealed after heating at high temperatures (150-500 degrees C) used for imitation of different burn intensities. Burning at 150-200 degrees C resulted in decreasing of soil pH, whilst heating at 300-500 degrees C caused increase of pH compare to unheated soils. Water-soluble organic carbon concentration in permafrost soils heated at 150-200 degrees C was much higher than that of unheated soils. All these changes determined soil microbial activity in heated soils. In particular, in soils heated at 300-500 degrees C there was momentary stimulating effect on substrate-induced respiration registered and on basal respiration values in soils burned at 150 degrees C and 300-400 degrees C. Four-month laboratory incubation of permafrost soils heated at different temperatures showed stimulation of microbial activity in first several days after inoculation due to high substrate availability after heating. Then soon after that soil microbial community started to be depleted on substrate because of decreasing water-soluble organic carbon, C and N content and it continued to the end of incubation. (C) 2016 Elsevier B.V. All rights reserved.

WOS,
Смотреть статью

Держатели документа:
VN Sukachev Inst Forest SB RAS, 50-28 Akad Gorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Masyagina, O. V.; Tokareva, I. V.; Prokushkin, A. S.; Russian Science Foundation [14-24-00113]