Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 4
Zoology
B24

    Siberian Moth (Dendrolimus sibiricus [Chetverikov]) (Lepidoptera: Lasiocampidae)
/ Y. N. Baranchikov, M. E. Montgomery // The Use of Classical Biological Control to Preserve Forests in North America. - 2014. - P383-394. - Bibliogr.: p. 390-391
РУБ Zoology


Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia
Доп.точки доступа:
Montgomery, Michael

    Genetic diversity of aboriginal and invasive populations of four-eyed fir bark beetle Polygraphus proximus Blandford (Coleoptera, Curculionidae, Scolytinae)
[Text] / A. Kononov [et al.] // Agric. For. Entomol. - 2016. - Vol. 18, Is. 3. - P294-301, DOI 10.1111/afe.12161. - Cited References:40. - We especially thank our colleagues who provided us with material for the present study. In Russia, beetles were collected by S. Krivets and I. Kerchev (West Siberia and Primorsky Krai); G. Yurchenko (Khabarovsk Province); Yu. Gninenko (Sakhalin Island); K. Tchilahsayeva and L. Seraya (Moscow Province and suburbs); and D. Demidko (Khakasiya). H. Masuya kindly collected beetles in Japan. This work was supported in part by the Russian Foundation for Fundamental Research (Project No. 14-04-01235a); the Siberian branch of the Russian Academy of Sciences (Project No. VI.52.2.6); and the State scientific project (Project No. 0324-2015-0003). . - ISSN 1461-9555. - ISSN 1461-9563
РУБ Entomology
Рубрики:
RED TURPENTINE BEETLE
   DENDROCTONUS-VALENS

   CYTOCHROME-OXIDASE

Кл.слова (ненормированные):
Bark beetle -- genetic diversity -- invasion -- invasive insects -- Polygraphus

Аннотация: 1 The four-eyed fir bark beetle Polygraphus proximus Blandf., native in Far Eastern Eurasia and nearby islands, is an invasive pest of fir trees in Siberian and European parts of Russia. Its invasion has been overlooked and was only finally appreciated in 2008. 2 Subsequently, the scale and area of damage to the forests has increased catastrophically. Thus, extensive monitoring and population control are required to localize and stop any further spread of the invasion. 3 We used mitochondrial DNA markers to analyze the genetic diversity and population structure of invasive and aboriginal populations of P. proximus, aiming to establish the main sources and corridors of its spread and to infer the history of colonization. 4 Eighteen haplotypes clustered in five groups were identified. The aboriginal populations had the highest degree of haplotype variability, including almost all haplotypes found in the areas of invasion. The Siberian introduced populations had a sufficient reduction of genetic variation, and a strong geographical partitioning. The European populations mostly had the same haplotypes as the invasive Siberian populations. 5 The results of the present study support the scenario of P. proximus spreading from the Far East of Russia westward via timber transport along the major Russian railway network.

WOS,
Смотреть статью

Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Cytol & Genet, 10 Prospekt Lavrentyeva, Novosibirsk 630090, Russia.
Russian Acad Sci, Siberian Branch, Inst Systemat & Ecol Anim, 11 Frunze Str, Novosibirsk 930091, Russia.
Marshall Univ, Dept Biol Sci, 1601 5th Ave, Huntington, WV 25755 USA.
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, 50-28 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kononov, Alexandr; Ustyantsev, Kirill; Blinov, Alexandr; Fet, Victor; Baranchikov, Yuri N.; Russian Foundation for Fundamental Research [14-04-01235a]; Siberian branch of the Russian Academy of Sciences [VI.52.2.6]; State scientific project [0324-2015-0003]

    Forewarned is forearmed: harmonized approaches for early detection of potentially invasive pests and pathogens in sentinel plantings
/ C. Morales-Rodriguez [et al.] // NeoBiota. - 2019. - Is. 47. - P95-123, DOI 10.3897/neobiota.47.34276. - Cited References:89. - This work was supported by COST Action Global Warning (FP1401). DLM and YB contribution was also supported by the Russian Foundation for Basic Research (Grant No. 17-04-01486). MG was supported by Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant III43002. MKA was supported by the Ministry of Science and Higher Education of the Republic of Poland. NK was supported by Le Studium foundation (France) and RFBR (Grant No. 19-04-01029). RE, IF and MK contribution was also supported by CABI with core financial support from its member countries (see http://www.cabi.org/about-cabi/who-we-work-with/key-donors/for details). IF contribution was further supported through a grant from the Swiss State Secretariat for Science, Education and Research (Grant C15.0081, awarded to RE). . - ISSN 1619-0033. - ISSN 1314-2488
РУБ Biodiversity Conservation + Ecology

Аннотация: The number of invasive alien pest and pathogen species affecting ecosystem functioning, human health and economies has increased dramatically over the last decades. Discoveries of invasive pests and pathogens previously unknown to science or with unknown host associations yet damaging on novel hosts highlights the necessity of developing novel tools to predict their appearance in hitherto naive environments. The use of sentinel plant systems is a promising tool to improve the detection of pests and pathogens before introduction and to provide valuable information for the development of preventative measures to minimize economic or environmental impacts. Though sentinel plantings have been established and studied during the last decade, there still remains a great need for guidance on which tools and protocols to put into practice in order to make assessments accurate and reliable. The sampling and diagnostic protocols chosen should enable as much information as possible about potential damaging agents and species identification. Consistency and comparison of results are based on the adoption of common procedures for sampling design and sample processing. In this paper, we suggest harmonized procedures that should be used in sentinel planting surveys for effective sampling and identification of potential pests and pathogens. We also review the benefits and limitations of various diagnostic methods for early detection in sentinel systems, and the feasibility of the results obtained supporting National Plant Protection Organizations in pest and commodity risk analysis.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Univ Tuscia, Dept Innovat Biol Agrofood & Forest Syst, Viterbo, Italy.
Tech Univ Braunschwei, Zool Inst, Braunschweig, Germany.
INRA, Forest Zool Res Unit, Orleans, France.
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest,Dept Forest Zool, Div Fed Res Ctr Krasnoyarsk Sci Ctr Siberian Bran, Krasnoyarsk, Russia.
Natl Res Inst Rural Engn Water & Forests INRGREF, Ariana, Tunisia.
Inst Bot, Nat Res Ctr, Vilnius, Lithuania.
Agr Univ Tirana, Dept Plant Protect, Tirana, Albania.
Ukrainian Res Inst Forestry & Forest Meliorat, Dept Forest Protect, Kharkov, Ukraine.
Isparta Appl Sci Univ, Dept Forest Engn, Isparta, Turkey.
Estonian Univ Life Sci Forestry & Rural Engn, Tartu, Estonia.
CABI, Ecosyst Management & Risk Anal & Invas Ecol, Delemont, Switzerland.
Univ Belgrade, Fac Forestry, Belgrade, Serbia.
Slovenian Forestry Inst, Dept Forest Protect, Ljubljana, Slovenia.
Agr Univ Krakow, Dept Forest Protect Entomol & Forest Climatol, Inst Forest Ecosyst Protect, Fac Forestry, Krakow, Poland.
CABI, Risk Anal & Invas Ecol, Delemont, Switzerland.
Ukrainian Natl Forestry Univ, Forestry Dept, Inst Forestry & Pk Gardening, Lvov, Ukraine.
St Petersburg State Forest Tech Univ, Dept Forest Protect Wood Sci & Game Management, St Petersburg, Russia.
Cardinal Stefan Wyszynski Univ Warsaw, Fac Biol & Environm Sci, Warsaw, Poland.
Agrifood & Biosci Inst, Grassland & Plant Sci Branch, Belfast, Antrim, North Ireland.
Swiss Fed Inst Forest Snow & Landscape Res WSL, Forest Hlth & Biot Interact, Birmensdorf, Switzerland.
CNR, Inst Sustainable Plant Protect, Sesto Fiorentino, Italy.
Norwegian Inst Bioecon Res Plant Hlth & Biotechno, As, Norway.
Univ Tartu, Inst Ecol & Earth Sci, Tartu, Estonia.
Nat Resources Inst Finland, Nat Resources, Kuopio, Finland.
Swedish Univ Agr Sci, Southern Swedish Forest Res Ctr, Alnarp, Sweden.
Univ Aberdeen, Dept Plant & Soil Sci, Aberdeen, Scotland.
Hellenic Agr Org Demeter, Dept Deciduous Fruit Frees, Inst Plant Breeding & Genet Resources, Naousa, Greece.
Siberian Fed Univ, Inst Ecol & Geog, Krasnoyarsk, Russia.

Доп.точки доступа:
Morales-Rodriguez, Carmen; Anslan, Sten; Auger-Rozenberg, Marie-Anne; Augustin, Sylvie; Baranchikov, Yuri; Bellahirech, Amani; Burokiene, Daiva; Cepukoit, Dovile; Cota, Ejup; Davydenko, Kateryna; Lehtijarvi, H. Tugba Dogmus; Drenkhan, Rein; Drenkhan, Tiia; Eschen, Rene; Franic, Iva; Glavendekic, Milka; de Groot, Maarten; Kacprzyk, Magdalena; Kenis, Marc; Kirichenko, Natalia; Matsiakh, Iryna; Musolin, Dmitry L.; Nowakowska, Justyna A.; O'Hanlon, Richard; Prospero, Simone; Roques, Alain; Santini, Alberto; Talgo, Venche; Tedersoo, Leho; Uimari, Anne; Vannini, Andrea; Witzell, Johanna; Woodward, Steve; Zambounis, Antonios; Cleary, Michelle; Nowakowska, Justyna; COST Action Global Warning [FP1401]; Russian Foundation for Basic Research [17-04-01486]; Ministry of Education, Science and Technological Development of the Republic of Serbia [III43002]; Ministry of Science and Higher Education of the Republic of Poland; Le Studium foundation (France); RFBR [19-04-01029]; CABI; Swiss State Secretariat for Science, Education and Research [C15.0081]

    North-Westward Expansion of the Invasive Range of Emerald Ash Borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) towards the EU: From Moscow to Saint Petersburg
/ D. L. Musolin, A. V. Selikhovkin, E. Y. Peregudova [et al.] // Forests. - 2021. - Vol. 12, Is. 4. - Ст. 502, DOI 10.3390/f12040502. - Cited References:25. - This research was funded by the Russian Foundation for Basic Research, grant number 17-04-01486. . - ISSN 1999-4907
РУБ Forestry

Кл.слова (ненормированные):
ash -- forest health -- Fraxinus -- invasive pest -- pest insects -- range -- expansion

Аннотация: Agrilus planipennis is a devastating invasive pest of ash trees in European Russia, Ukraine, and North America. To monitor the north-western limit of its European invasive range, in June 2018 we established 10 study plots along the federal highway M10 (Russia) that runs between Moscow and Saint Petersburg through Tver' City (approx. 180 km from Moscow), and lined with ash trees. On each plot, 2-4 Fraxinus pennsylvanica trees with heights ranging 6.1-17.0 m and diameters ranging 7.0-18.0 cm were girdled, i.e., 50 cm of their bark were removed. The study plots were visited and girdled trees were examined in September and November, 2018, and in October, 2019. Observations revealed that the current continuous north-western limit of A. planipennis range in European Russia coincides with the north-western border of Tver' City and this range limit has not distinctly shifted north-westward during 2015-2019. In spite of the rich food supply (due to abundant F. pennsylvanica and F. excelsior plantings) in Tver' City and along roads going to and from, the population density of A. planipennis in the area is currently low. Recent (September 2020) sudden detection of a spatially isolated A. planipennis outbreak approx. 520 km far north-westward from Tver' (in Saint Petersburg) suggested that A. planipennis most likely had arrived at Saint Petersburg not by gradual stepwise (flying tree-to-tree) expansion of its continuous invasive range in Tver' City, but as a result of its accidental introduction by means of, e.g., "insect-hitchhiked" vehicles, transported plants for planting, and/or other commodities. The proximity of the reported A. planipennis outbreak to the borders of the EU (approx. 130 km to Estonia and Finland) requires urgent measures for its containment and control, and constant monitoring.

WOS

Держатели документа:
St Petersburg State Forest Tech Univ, Dept Forest Protect Wood Sci & Game Management, Inst Skiy Per 5, St Petersburg 194021, Russia.
St Petersburg State Univ, Dept Biogeog & Environm Protect, Univ Skaya Nab 7-9, St Petersburg 199034, Russia.
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Dept Forest Zool,VN Sukachev Inst Forest,Fed Res, Akad Gorodok 50, Krasnoyarsk 660036, Russia.
Swedish Univ Agr Sci, Dept Forest Mycol & Plant Pathol, SE-750 Uppsala, Sweden.

Доп.точки доступа:
Musolin, Dmitry L.; Selikhovkin, Andrey V.; Peregudova, Elena Y.; Popovichev, Boris G.; Mandelshtam, Michail Y.; Baranchikov, Yuri N.; Vasaitis, Rimvys; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [17-04-01486]