Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 9

    Eurosiberian Transect: an introduction to the experimental region
/ E. -D. Schulze, N. N. Vygodskaya, N. M. Tchebakova, E. I. Parfenova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 421-428


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Vygodskaya, N.N.; Выгодская Н.Н.; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Parfenova, Elena Ivanovna; Парфенова, Елена Ивановна; Шульце Е-Д

    Climatic control of stand thinning in unmanaged spruce forests of the southern taiga in European Russia
/ N.N. Vygodskaya, E.-D. Schulze, N.M. Tchebakova et al // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 443-461

Аннотация: The demography of Picea abies trees was studied over a period of about 30 yr on permanent plots in six forest types of an unmanaged forest located in a forest reserve of the Southern Taiga, NW of Moscow. This study encompassed a broad range of conditions that are typical for old growth spruce forests in the boreal region, including sites with a high water table and well drained sites, podzolic soils, acidic soils and organic soils. At all sites stand density, tree height, breast height diameter and age has been periodically recorded since 1968. Tree density ranged between 178 and 1035 trees ha(-1) for spruce and between 232 and 1168 trees ha-1 for the whole stand, including mainly Betula and Populus. Biomass ranged between 5.4 and 170 t(dw) ha(-1) for spruce and between 33 to 198 td, ha(-1) for the whole stand. Averaged over a long period of time, biomass did not change with stand density according to the self-thinning rule. in fact, on most sites biomass remained almost constant in the long term, while stand density decreased. The study demonstrates that the loss of living trees was not regulated by competitive interactions between trees, but by disturbances caused by climatic events. Dry years caused losses of minor and younger trees without affecting biomass. In contrast, periodic storms resulted in a loss of biomass without affecting density, except for extreme events, where the whole stand may fall. Dry years followed by wet years enhance the effect on stand density. Since mainly younger trees were lost, the apparent average age of the stand increased more than real time (20% for Picea). Average mortality was 2.8 +/- 0.5% yr(-1) for spruce. Thus, the forest is turned over once every 160-180 yr by disturbances. The demography of dead trees shows that the rate of decay depends on the way the tree died. Storm causes uprooting and stem breakage, where living trees fall to the forest floor and decay with a mean residence time (t(1/2)) of about 16 yr (decomposition rate constant k(d) = 0.042 yr(-1)). This contrasts with trees that die by drought or insect damage, and which remain as standing dead trees with a mean residence time of 3-13 yr until they are brought to ground, mainly by wind. These standing dead trees require an additional mean residence time of about 22 yr for decay on the ground (k(d) = 0.031). In conclusion, we demonstrate that, rather than competitive interactions, it is climate extremes, namely drought, rapid changes of dry years followed by wet years, and storm that determine stand structure, biomass and density, which then affect the net exchange with the atmosphere. The climatic effects are difficult to predict, because the sensitivity of a stand to climate extremes depends on the past history. This may range from no effect, if the stand was recovering from an earlier drought and exhibited a relatively low density, to a total collapse of canopies, if drought reduces stand density to an extent that other climatic extremes (especially wind) may cause further damage.

WOS

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Schulze, E.-D.; Шульце Е-Д; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Выгодская Н.Н.

    Ecosystems and climate interactions in the boreal zone of northern Eurasia
[Text] / N. N. Vygodskaya [et al.] // Environ. Res. Lett. - 2007. - Vol. 2, Is. 4. - Ст. 45033, DOI 10.1088/1748-9326/2/4/045033. - Cited References: 33 . - 7. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: The climate system and terrestrial ecosystems interact as they change. In northern Eurasia these interactions are especially strong, span all spatial and timescales, and thus have become the subject of an international program: the Northern Eurasia Earth Science Partnership Initiative (NEESPI). Without trying to cover all areas of these interactions, this paper introduces three examples of the principal micrometeorological, mesometeorological and subcontinental feedbacks that control climate-terrestrial ecosystem interactions in the boreal zone of northern Eurasia. Positive and negative feedbacks of forest paludification, of windthrow, and of climate-forced displacement of vegetation zones are presented. Moreover the interplay of different scale feedbacks, the multi-faceted nature of ecosystems-climate interactions and their potential to affect the global Earth system are shown. It is concluded that, without a synergetic modeling approach that integrates all major feedbacks and relationships between terrestrial ecosystems and climate, reliable projections of environmental change in northern Eurasia are impossible, which will also bring into question the accuracy of global change projections.

WOS,
Scopus

Держатели документа:
[Vygodskaya, N. N.] Jan Kochanowski Univ Humanities & Sci, Inst Geog, Sventokshistkaya Acad Poland, PL-25406 Kielce, Poland
[Groisman, P. Ya] Natl Climat Ctr, Asheville, NC 28801 USA
[Tchebakova, N. M.
Parfenova, E. I.] VN Sukachev Inst Forest, Siberian Branch Russian Acad Sci, Krasnoyarsk 660036, Russia
[Kurbatova, J. A.] Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow 119071, Russia
[Panfyorov, O.] Univ Gottingen, Inst Bioclimatol, D-37077 Gottingen, Germany
[Sogachev, A. F.] Univ Helsinki, Dept Phys Sci, FI-00014 Helsinki, Finland

Доп.точки доступа:
Vygodskaya, N.N.; Groisman, P.Y.; Tchebakova, N.M.; Kurbatova, J.A.; Panfyorov, O...; Parfenova, E.I.; Sogachev, A.F.

    Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes
[Text] / A. . Arneth [et al.] // Tellus Ser. B-Chem. Phys. Meteorol. - 2002. - Vol. 54, Is. 5. - P514-530, DOI 10.1034/j.1600-0889.2002.01349.x. - Cited References: 53 . - 17. - ISSN 0280-6509
РУБ Meteorology & Atmospheric Sciences

Аннотация: Net ecosystem-atmosphere exchange of CO2 (NEE) was measured in two boreal bogs during the snow-free periods of 1998, 1999 and 2000. The two sites were located in European Russia (Fyodorovskoye), and in central Siberia (Zotino). Climate at both sites was generally continental but with more extreme summer-winter gradients in temperature at the more eastern site Zotino. The snow-free period in Fyodorovskoye exceeded the snow-free period at Zotino by several weeks. Marked seasonal and interannual differences in NEE were observed at both locations, with contrasting rates and patterns. Amongst the most important contrasts were: (1) Ecosystem respiration at a reference soil temperature was higher at Fyodorovskoye than at Zotino. (2) The diurnal amplitude of summer NEE was larger at Fyodorovskoye than at Zotino. (3) There was a modest tendency for maximum 24 h NEE during average rainfall years to be more negative at Zotino (-0.17 versus -0.15 mol m(-2) d(-1)), suggesting a higher productivity during the summer months. (4) Cumulative net uptake of CO2 during the snow-free period was strongly related to climatic differences between years. In Zotino the interannual variability in climate, and also in the CO2 balance during the snow-free period, was small. However, at Fyodorovskoye the bog was a significant carbon sink in one season and a substantial source for CO2-C in the next, which was below-average dry. Total snow-free uptake and annual estimates of net CO2-C uptake are discussed, including associated uncertainties.

WOS

Держатели документа:
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Max Planck Inst Meteorol, D-20146 Hamburg, Germany
Severtsov Inst Ecol & Evolut, Moscow, Russia
VN Sukachev Forest Inst, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Arneth, A...; Kurbatova, J...; Kolle, O...; Shibistova, O.B.; Lloyd, J...; Vygodskaya, N.N.; Schulze, E.D.

    The Eurosiberian Transect: an introduction to the experimental region
[Text] / E. D. Schulze [et al.] // Tellus Ser. B-Chem. Phys. Meteorol. - 2002. - Vol. 54, Is. 5. - P421-428, DOI 10.1034/j.1600-0889.2002.01342.x. - Cited References: 27 . - 8. - ISSN 0280-6509
РУБ Meteorology & Atmospheric Sciences

Аннотация: An introduction is given to the geography of Russian forests and to the specific conditions of the study sites located along the 60degrees latitude east of Moscow (Fyedorovskoe) near the Ural Mountains (Syktivkar) and in Central Siberia near the Yennisei river (Zotino). The climatic conditions were similar at all three sites. The main ecological parameter that changes between European Russia and Siberia is the length of the growing season (230 d above 0 degreesC NE Moscow to 170 d above 0 degreesC in Central Siberia) and to a lesser extent precipitation (580 mm NE Moscow to 530 mm in Central Siberia). The experimental sites were generally similar to the regional conditions,. although the Tver region has less forest and more grassland than the central forest reserve, and the Komi region has slightly less wetland than the study area. The Krasnoyarsk region reaches from the arctic ocean to and central Asia and contains a significant proportion of non-forest land. The boreal forest of west and east Yennisei differs mainly with respect to wetlands, which cover almost half of the land area on the west bank. All sites are prone to disturbance. Heavy winds and drought or surplus water are the main disturbance factors in European Russia (a 15-20 yr cycle), and fire is the dominating disturbance factor in Siberia (220-375 yr for stand replacing fires).

WOS,
Полный текст

Держатели документа:
Max Planck Inst Biogeochem, D-07701 Jena, Germany
RAS, Severtsov Inst Ecol & Evolut, Moscow 1107071, Russia
Siberian RAS, Inst Forest, Krasnoyarsk 660036, Russia
Univ Tuscia, Dept Forest Scil & Environm, I-01100 Viterbo, Italy

Доп.точки доступа:
Schulze, E.D.; Vygodskaya, N.N.; Tchebakova, N.M.; Czimczik, C.I.; Kozlov, D.N.; Lloyd, J...; Mollicone, D...; Parfenova, E...; Sidorov, K.N.; Varlagin, A.V.; Wirth, C...

    Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink - a synthesis
[Text] / E. D. Schulze [et al.] // Glob. Change Biol. - 1999. - Vol. 5, Is. 6. - P703-722, DOI 10.1046/j.1365-2486.1999.00266.x. - Cited References: 93 . - 20. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Based on review and original data, this synthesis investigates carbon pools and fluxes of Siberian and European forests (600 and 300 million ha, respectively). We examine the productivity of ecosystems, expressed as positive rate when the amount of carbon in the ecosystem increases, while (following micrometeorological convention) downward fluxes from the atmosphere to the vegetation (NEE=Net Ecosystem Exchange) are expressed as negative numbers. Productivity parameters are Net Primary Productivity (NPP=whole plant growth), Net Ecosystem Productivity (NEP = CO2 assimilation minus ecosystem respiration), and Net Biome Productivity (NBP=NEP minus carbon losses through disturbances bypassing respiration, e.g. by fire and logging). Based on chronosequence studies and national forestry statistics we estimate a low average NPP for boreal forests in Siberia: 123 gC m(-2) y(-1). This contrasts with a similar calculation for Europe which suggests a much higher average NPP of 460 gC m(-2) y(-1) for the forests there. Despite a smaller area, European forests have a higher total NPP than Siberia (1.2-1.6 vs. 0.6-0.9 x 10(15) gC region(-1) y(-1)). This arises as a consequence of differences in growing season length, climate and nutrition. For a chronosequence of Pinus sylvestris stands studied in central Siberia during summer, NEE was most negative in a 67-y old stand regenerating after fire (-192 mmol m(-2) d(-1)) which is close to NEE in a cultivated forest of Germany (-210 mmol m(-2) d(-1)). Considerable net ecosystem CO2-uptake was also measured in Siberia in 200- and 215-y old stands (NEE:174 and - 63 mmol m(-2) d(-1)) while NEP of 7- and 13-y old logging areas were close to the ecosystem compensation point. Two Siberian bogs and a bog in European Russia were also significant carbon sinks (-102 to - 104 mmol m(-2) d(-1)). Integrated over a growing season (June to September) we measured a total growing season NEE of -14 mol m(-2) summer(-1) (-168 gC m(-2) summer(-1)) in a 200-y Siberian pine stand and -5 mol m(-2) summer(-1) (-60 gC m(-2) summer(-1)) in Siberian and European Russian bogs. By contrast, over the same period, a spruce forest in European Russia was a carbon source to the atmosphere of (NEE: + 7 mol m(-2) summer(-1) = + 84 gC m(-2) summer(-1)). Two years after a windthrow in European Russia, with all trees being uplifted and few successional species, lost 16 mol C m(-2) to the atmosphere over a 3-month in summer, compared to the cumulative NEE over a growing season in a German forest of -15.5 mol m(-2) summer(-1) (-186 gC m(-2) summer(-1); European flux network annual averaged - 205 gC m(-2) y(-1)). Differences in CO2-exchange rates coincided with differences in the Bowen ratio, with logging areas partitioning most incoming radiation into sensible heat whereas bogs partitioned most into evaporation (latent heat). Effects of these different surface energy exchanges on local climate (convective storms and fires) and comparisons with the Canadian BOREAS experiment are discussed. Following a classification of disturbances and their effects on ecosystem carbon balances, fire and logging are discussed as the main processes causing carbon losses that bypass heterotrophic respiration in Siberia. Following two approaches, NBP was estimated to be only about 13-16 mmol m(-2) y(-1) for Siberia. It may reach 67 mmol m(-2) y(-1) in North America, and about 140-400 mmol m(-2) y(-1) in Scandinavia. We conclude that fire speeds up the carbon cycle, but that it results also in long-term carbon sequestration by charcoal formation. For at least 14 years after logging, regrowth forests remain net sources of CO2 to the atmosphere. This has important implications regarding the effects of Siberian forest management on atmospheric concentrations. For many years after logging has taken place, regrowth forests remain weaker sinks for atmospheric CO2 than are nearby old-growth forests.

Полный текст,
WOS,
Scopus

Держатели документа:
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Landcare Res, Lincoln, New Zealand
Russian Acad Sci, Inst Evolut & Ecol, Moscow 117071, Russia
Univ Tubingen, Inst Bot, D-72076 Tubingen, Germany
Comenius Univ, Dept Biophys & Chem Phys, Bratislava 84215, Slovakia
Univ Tuscia, Dept Forest Sci & Environm, I-01100 Viterbo, Italy
Moscow MV Lomonosov State Univ, Ecol Travel Ctr, Moscow 119899, Russia
Russian Acad Sci, Siberian Branch, Forest Inst, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Schulze, E.D.; Lloyd, J...; Kelliher, F.M.; Wirth, C...; Rebmann, C...; Luhker, B...; Mund, M...; Knohl, A...; Milyukova, I.M.; Schulze, W...; Ziegler, W...; Varlagin, A.B.; Sogachev, A.F.; Valentini, R...; Dore, S...; Grigoriev, S...; Kolle, O...; Panfyorov, M.I.; Tchebakova, N...; Vygodskaya, N.N.

    Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog I. Interseasonal and interannual variability of energy and latent heat fluxes during the snowfree period
/ J. Kurbatova [et al.] // Tellus, Series B: Chemical and Physical Meteorology. - 2002. - Vol. 54, Is. 5. - P497-513, DOI 10.1034/j.1600-0889.2002.01354.x . - ISSN 0280-6509

Кл.слова (ненормированные):
atmosphere-biosphere interaction -- energy flux -- evaporation -- latent heat flux -- ombrotrophic environment -- Russian Federation

Аннотация: Energy and latent heat fluxes ?E were measured over ombrotrophic bogs in European Russia (Fyodorovskoye) and in central Siberia (Zotino) using the eddy covariance technique, as part of the EuroSiberian Carbonflux Project. The study covered most of the snowfree periods in 1998, 1999 and 2000; in addition some data were also collected under snow in early spring and late autumn 1999 and 2000. The snowfree period in Europian Russia exceeds the snowfree period in central Siberia by nearly 10 weeks. Marked seasonal and interannual differences in temperatures and precipitation, and hence energy partitioning, were observed at both sites. At both bogs latent heat fluxes (?E) exceeded sensible heat fluxes (H) during most of the snowfree period: maximum ?E were between 10 and 12 MJ m -2 d -1 while maximum H were between 3 and 5 MJ m -2 d -1. There was a tendency towards higher Bowen ratios at Fyodorovskoye. Net radiation was the most influential variable that regulated daily evaporation rates, with no obvious effects due to surface dryness during years with exceptionally dry summers. Total snowfree evaporation at Fyodorovskoye (320 mm) exceeded totals at Zotino (280 mm) by 15%. At the former site, evaporation was equal to or less than precipitation, contrasting the Zotino observations, where summer evaporation was distinctly higher than precipitation. During the entire observation period evaporation rates were less than 50% of their potential rate. These data suggest a strong 'mulching' effect of a rapidly drying peat surface on total evaporation, despite the substantial area of free water surfaces during parts of the year. This effect of surface dryness was also observed as close atmospheric coupling.

Scopus,
WOS

Держатели документа:
A.N.Severtzov Inst.of Ecol./Evol.RAS, Lenisnki Prospect, Moscow, Russian Federation
Max Planck Inst. for Biogeochemistry, PO Box 100164, Jena 07701, Germany
Max Planck Inst. for Meteorology, Bundesstrasse 55, Hamburg 20146, Germany
V.N. Sukachev Forest Institute, Krasnoyarsk 660036, Russian Federation

Доп.точки доступа:
Kurbatova, J.; Arneth, A.; Vygodskaya, N.N.; Kolle, O.; Varlargin, A.V.; Milyukova, I.M.; Tchebakova, N.M.; Schulze, E.-D.; Lloyd, J.

    Energy and mass exchange and the productivity of main Siberian ecosystems (from Eddy covariance measurements). 2. carbon exchange and productivity
/ N. M. Tchebakova [et al.] // Biol. Bull. - 2015. - Vol. 42, Is. 6. - P579-588, DOI 10.1134/S1062359015660024 . - ISSN 1062-3590

Аннотация: Direct measurements of CO2 fluxes by the eddy covariance method have demonstrated that the examined middle-taiga pine forest, raised bog, true steppe, and southern tundra along the Yenisei meridian (~90° E) are carbon sinks of different capacities according to annual output. The tundra acts as a carbon sink starting from June; forest and bog, from May; and steppe, from the end of April. In transitional seasons and winter, the ecosystems are a weak source of carbon; this commences from September in the tundra, from October in the forest and bog, and from November in the steppe. The photosynthetic productivity of forest and steppe ecosystems, amounting to 480–530 g C/(m2 year), exceeds by 2–2.5 times that of bogs and tundras, 200–220 g C/(m2 year). The relationships between the heat balance structure and CO2 exchange are shown. Possible feedback of carbon exchange between the ecosystems and atmosphere as a result of climate warming in the region are assessed. © 2015, Pleiades Publishing, Inc.

Scopus,
WOS

Держатели документа:
Sukachev Institute of Forestry, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/28, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodnyi pr. 79, Krasnoyarsk, Russian Federation
Sventokshistkaya Academy, Institute of Geography, Jan Kochanowski University, ul. Sweintokrzyska 15, Kielce, Poland
Department of Earth and Ecosystem Science, Lund University, Solvegatan 12, Lund, Sweden
Department of Forest Resources and Environment, Tuscia University, Via del San Camillo de Lellis, Viterbo, Italy
Max Planck Institute for Biogeochemistry, Hans Knoll str. 10, Jena, Germany
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, Russian Federation

Доп.точки доступа:
Tchebakova, N. M.; Vygodskaya, N. N.; Arneth, A.; Marchesini, L. B.; Kurbatova, Y. A.; Parfenova, E. I.; Valentini, R.; Verkhovets, S. V.; Vaganov, E. A.; Schulze, E.-D.

    Energy and mass exchange and the productivity of main Siberian ecosystems (from Eddy covariance measurements). 1. heat balance structure over the vegetation season
/ N. M. Tchebakova [et al.] // Biol. Bull. - 2015. - Vol. 42, Is. 6. - P570-578, DOI 10.1134/S1062359015660012 . - ISSN 1062-3590

Аннотация: Direct measurements of heat balance (latent heat and sensible heat fluxes) by the eddy covariance method, undertaken in 1998–2000 and 2002–2004, are used to obtain information on the daily, seasonal, and annual dynamics of energy and mass exchange between the atmosphere and the typical ecosystems of Siberia (middle taiga pine forest, raised bog, and true four grass steppe with data for typical tundra) along the Yenisei meridian (90° E). © 2015, Pleiades Publishing, Inc.

Scopus,
WOS

Держатели документа:
Sukachev Institute of Forestry, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/28, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodnyi pr. 79, Krasnoyarsk, Russian Federation
Sventokshistkaya Academy, Institute of Geography, Jan Kochanowski University, ul. Sweintokrzyska 15, Kielce, Poland
Department of Earth and Ecosystem Science, Lund University, Solvegatan 12, Lund, Sweden
Department of Forest Resources and Environment, Tuscia University, Via del San Camillo de Lellis, Viterbo, Italy
Max Planck Institute for Biogeochemistry, Hans Knoll str. 10, Jena, Germany
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, Russian Federation

Доп.точки доступа:
Tchebakova, N. M.; Vygodskaya, N. N.; Arneth, A.; Marchesini, L. B.; Kolle, O.; Kurbatova, Y. A.; Parfenova, E. I.; Valentini, R.; Vaganov, E. A.; Schulze, E.-D.