Труды сотрудников института физики

w10=
Найдено документов в текущей БД: 1

    Majorana modes and Fano resonances in Aharonov–Bohm ring with topologically nontrivial superconducting bridge
/ S. V. Aksenov, M. Yu. Kagan // J. Low Temp. Phys. - 2024, DOI 10.1007/s10909-024-03171-5. - Cited References: 46. - We were inspired by Andreev’s seminal contribution in the superconducting nanophysics—the field which started in fact from Josephson effect and Andreev reflection. M. Yu. Kagan thanks the Program for basic research of the National Research University Higher School of Economics for support. The work was partially carried out within the state assignment of Kirensky Institute of Physics. S.V.A. thanks the Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS" for support . - Article in press. - ISSN 0022-2291. - ISSN 1573-7357

Кл.слова (ненормированные):
Topological superconductivity -- Majorana modes -- Aharonov–Bohm ring -- Fano resonanse

Аннотация: We study different resonances (first of all of the Fano type) in the interference device formed by the Aharonov–Bohm ring with superconducting (SC) wire in the topologically nontrivial state playing a role of a bridge between top and bottom arms. We analyze Majorana modes on the ends of the SC wire and show that the collapse of the additional Fano resonance, that is initially induced by transport scheme asymmetry, is connected with the increase of the length of the bridge when the binding energy of the Majorana end modes tends to zero. In local transport regime, the Fano resonances are stable against the change of the transport symmetry. The reasons of both collapse and sustainability are analyzed using a spinless toy model including the Kitaev chain.

Смотреть статью,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, Akademgorodok 50/38, Krasnoyarsk, Russia, 660036
National Research University Higher School of Economics, Myasnitskaya Street 20, Moscow, Russia, 101000
P.L. Kapitza Institute for Physical Problems, Russian Academy of Sciences, Kosygin Street 2, Moscow, Russia, 119334

Доп.точки доступа:
Kagan, M. Yu.; Аксенов, Сергей Владимирович