Труды сотрудников института физики

w10=
Найдено документов в текущей БД: 1

    Ideal magnetohydrodynamic flow around a blunt body under anisotropic pressure
/ N. V. Erkaev, H. K. Biernat, C. J. Farrugia // Phys. Plasmas. - 2000. - Vol. 7, Is. 8. - P. 3413-3420, DOI 10.1063/1.874205. - Cited References: 23 . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas

Аннотация: The plasma flow past a blunt obstacle in an ideal magnetohydrodynamic (MHD) model is studied, taking into account the tensorial nature of the plasma pressure. Three different closure relations are explored and compared with one another. The first one is the adiabatic model proposed by Chew, Goldberger, and Low. The second closure is based on the mirror instability criterion, while the third depends on an empirical closure equation obtained from observations of solar wind flow past the Earth's magnetosphere. The latter is related with the criterion of the anisotropic ion cyclotron instability. In the presented model, the total pressure, defined as the sum of magnetic pressure and perpendicular plasma pressure, is assumed to be a known function of Cartesian coordinates. The calculation is based on the Newtonian approximation for the total pressure along the obstacle and on a quadratic behavior with distance from the obstacle along the normal direction. Profiles of magnetic field strength and plasma parameters are presented along the stagnation stream line between the shock and obstacle of an ideal plasma flow with anisotropy in thermal pressure and temperature. (C) 2000 American Institute of Physics. [S1070- 664X(00)04407-4].

WOS,
Scopus,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk 660036, Russia
Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA
ИВМ СО РАН

Доп.точки доступа:
Biernat, H. K.; Farrugia, C. J.; Еркаев, Николай Васильевич