Труды сотрудников института физики

w10=
Найдено документов в текущей БД: 5

    Interaction of Scandium and Titanium Atoms with a Carbon Surface Containing Five- and Seven-Membered Rings
/ P. O. Krasnov, N. S. Eliseeva, A. A. Kuzubov // J. Exp. Theor. Phys. - 2012. - Vol. 114, Is. 1. - P. 80-84, DOI 10.1134/S1063776111160059. - Cited References: 25. - We are grateful to the Joint Supercomputer Center, Russian Academy of Sciences, for the possibility of using the computer cluster for our quantum-chemical calculations. This work was supported by the Ministry of Education and Science of the Russian Federation (federal program "Human Capital for Science and Education in Innovative Russia" for 2009-2013). . - ISSN 1063-7761. - ISSN 1090-6509
РУБ Physics, Multidisciplinary

Аннотация: The use of carbon nanotubes coated by atoms of transition metals to store molecular hydrogen is associated with the problem of the aggregation of these atoms, which leads to the formation of metal clusters. The quantum-chemical simulation of cluster models of the carbon surface of a graphene type with scandium and titanium atoms has been performed. It has been shown that the presence of five- and seven-membered rings, in addition to six-membered rings, in these structures makes it possible to strongly suppress the processes of the migration of metal atoms over the surface, preventing their clustering.

Смотреть статью,
Scopus,
WoS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
[Krasnov, P. O.
Kuzubov, A. A.] Siberian State Technol Univ, Krasnoyarsk 660049, Russia
[Krasnov, P. O.
Kuzubov, A. A.] Russian Acad Sci, Siberian Branch, Kirensky Inst Phys, Krasnoyarsk 660036, Russia
[Eliseeva, N. S.
Kuzubov, A. A.] Siberian Fed Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Eliseeva, N. S.; Kuzubov, A. A.; Кузубов, Александр Александрович; Краснов, Павел Олегович; Ministry of Education and Science of the Russian Federation

    Temporal shape manipulation of intense light pulses by coherent population trapping
/ V. G. Arkhipkin, I. V. Timofeev // Phys. Rev. A. - 2006. - Vol. 73, Is. 2. - Ст. 25803, DOI 10.1103/PhysRevA.73.025803. - Cited References: 37 . - ISSN 1050-2947
РУБ Optics + Physics, Atomic, Molecular & Chemical

Аннотация: We describe how to control the temporal shape of adiabaton using peculiarities of propagation dynamics under coherent population trapping. Temporal compression is demonstrated as a special case of pulse shaping. The general case of unequal oscillator strengths of two optical transitions in an atom is considered.

WOS,
Для получение полного текста обратитесь в библиотеку


Доп.точки доступа:
Timofeev, I. V.; Тимофеев, Иван Владимирович; Архипкин, Василий Григорьевич

    Ab initio study of hydrogen chemical adsorption on platinum surface/carbon nanotube join system
/ A. S. Fedorov, P. B. Sorokin, A. A. Kuzubov // Phys. Status Solidi B. - 2008. - Vol. 245, Is. 8. - P. 1546-1551, DOI 10.1002/pssb.200844155. - Cited References: 31 . - ISSN 0370-1972
РУБ Physics, Condensed Matter

Аннотация: The process of hydrogen chemical adsorption on platinum cluster/single wall carbon nanotube (CNT) join surfaces is modelled at various temperatures and pressures. For that, the adsorption energy of hydrogen atoms on surfaces of both platinum (111) plate and CNT (5,5) or (8,8) types is calculated by density functional theory with the PBE approximation. At various temperatures the hydrogen atom hopping rate on both platinum and CNT surfaces is calculated by the transition state theory. Furthermore the hydrogen hopping rate from the platinum surface to the attached nanotube is obtained by calculation of the total energy profile. It is proved that hydrogen atoms can migrate easily at the platinum surface at all temperatures, but at the CNT surface they can migrate beginning at 400-500 K. By calculation of chemical potentials of hydrogen in gas or on CNT or platinum cluster surfaces the equilibrium density of adsorbed hydrogen was calculated at different temperatures and pressures. It is established that for all temperatures in the range 300-900 K and for all pressures less than 500 bar, the hydrogen is dissociated and chemically adsorbed on the platinum surface very effectively, but surface site occupation by hydrogen on attached CNT surface is rather small. But if CNT vacancies are present in the tube structure and the temperature is lower then 450 K, hydrogen atoms can be adsorbed effectively enough on these vacancies. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

WOS,
Scopus,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
[Fedorov, Alexander S.
Sorokin, Pavel B.
Kuzubov, Alexander A.] LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
[Fedorov, Alexander S.] Moscow Railroad Transport Engn Inst, Krasnoyarsk 660028, Russia
[Sorokin, Pavel B.
Kuzubov, Alexander A.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
ИФ СО РАН
Kirensky Institute of Physics, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
Railroad Transport Institute, 660028 Krasnoyarsk, Russian Federation
Siberian Federal University, 79 Svobodniy av, 660041 Krasnoyarsk, Russian Federation

Доп.точки доступа:
Sorokin, P. B.; Kuzubov, A. A.; Кузубов, Александр Александрович; Федоров, Александр Семенович

    Density and thermodynamics of hydrogen adsorbed on the surface of single-walled carbon nanotubes
/ A. S. Fedorov, P. B. Sorokin // Phys. Solid State. - 2006. - Vol. 48, Is. 2. - P. 402-407, DOI 10.1134/S1063783406020351. - Cited References: 22 . - ISSN 1063-7834
РУБ Physics, Condensed Matter

Аннотация: A method is proposed for calculating the adsorption of hydrogen in single-walled carbon nanotubes. This method involves solving the Schrodinger equation for a particle (hydrogen molecule) moving in a potential generated by the surrounding hydrogen molecules and atoms forming the wall of the carbon nanotube. The interaction potential for hydrogen molecules is taken in the form of the Silvera-Goldman empirical potential, which adequately describes the experimental data on the interaction between H(2) molecules (including the van der Waals interaction). The interaction of hydrogen molecules with carbon atoms is included in the calculation through the Lennard-Jones potential. The free energy at a nonzero temperature is calculated with allowance made for the phonon contribution, which, in turn, makes it possible to take into account the correlations in the mutual arrangement of the neighboring molecules. The dependences of the total energy, the free energy, and the Gibbs thermodynamic potential on the applied pressure P and temperature T are calculated for adsorbed hydrogen molecules. These dependences are obtained for the first time with due regard for the quantum effects. The pressure and temperature dependences of the hydrogen density m(P, T) are also constructed for the first time.

WOS,
Scopus,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Div, Krasnoyarsk 660036, Russia
ИФ СО РАН
Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Sorokin, P. B.; Федоров, Александр Семенович

    Calculation of the energy of binding of titanium and scandium complexes to the surface of carbon nanotubes
/ A. A. Kuzubov [et al.] // Russ. J. Phys. Chem. B. - 2009. - Vol. 3, Is. 4. - P. 679-683, DOI 10.1134/S1990793109040289. - Cited References: 27. - This work was supported by the analytical departmental program "Development of Higher Education Potential (2009-2100)" (grant 2.1.1/2584) and by the Russian Foundation for Basic Research, project no. 09-02-00324-a. . - ISSN 1990-7931
РУБ Physics, Atomic, Molecular & Chemical

Аннотация: Complexes of zigzag-type carbon nanotubes (CNTs) with transition metal atoms, scandium and titanium, were studied. It was demonstrated that the energy of binding of both atoms with a carbon surface decreases whereas the rate of diffusion along the surface increases with increasing nanotube diameter. The rate constant of migration of scandium atoms over a CNT surface are several orders of magnitude higher than that for titanium atoms, because the CNT surface-Sc atom binding energy is substantially lower.

WOS,
Scopus,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Institute of Natural and Humanitarian Sciences, Siberian Federal University, Krasnoyarsk 660041, Russian Federation
Kirenskii Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation
Siberian State Technological University, Krasnoyarsk 660049, Russian Federation

Доп.точки доступа:
Kuzubov, A. A.; Кузубов, Александр Александрович; Krasnov, P. O.; Краснов, Павел Олегович; Kozhevnikov, T. A.; Popov, M. A.; Analytical departmental program "Development of Higher Education Potential" [2.1.1/2584]; Russian Foundation for Basic Research [09-02-00324-a]