Труды сотрудников института физики

w10=
Найдено документов в текущей БД: 2

    Exotic superconductivity and magnetism in ruthenates
/ S. G. Ovchinnikov // Phys. Usp. - 2003. - Vol. 46, Is. 1. - P. 21-44, DOI 10.1070/PU2003v046n01ABEH001235. - Cited References: 167 . - ISSN 1063-7869
РУБ Physics, Multidisciplinary

Аннотация: Basic experimental and theoretical results on ruthenates and rutheno-cuprates are reviewed. The electronic structure of various ruthenates and exotic superconductivity in Sr2RuO4 with spin-triplet pairing are described. The complex phase diagram of Ca2-xSrxRuO4, involving competing magnetic phases and metal-insulator transitions, is described, as are the exotic magnetic properties of Sr3Ru2O7 and of the double perovskite Sr2YRuO6, and the coexistence of superconductivity and magnetism in the rutheno-cuprate RuSr2GdCu2O8. Possible applications of Sr2RuO4 and SrRuO3 are considered. The effect of strong electron correlations is discussed, and the properties of ruthenates and cuprates are compared.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, LV Kirenskii Inst Phys, Siberian Div, Krasnoyarsk 660036, Russia
ИФ СО РАН
L V Kirenskii Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, 660036 Krasnoyarsk, Russian Federation

Доп.точки доступа:
Овчинников, Сергей Геннадьевич

    Quasiparticles in strongly correlated electronic systems in cuprate oxides
/ S. G. Ovchinnikov // Uspekhi Fiz. Nauk. - 1997. - Vol. 167, Is. 10. - P. 1043-1068. - Cited References: 227 . - ISSN 0042-1294
РУБ Physics, Multidisciplinary

Аннотация: New experimental and theoretical results on the electronic structure and spectral properties of quasiparticles in cuprate oxides are reviewed. It is shown that the electronic structure transforms from antiferromagnetic insulators to optimally doped high-temperature superconductors as the doping level is varied. The experimental methods considered are primarily angular resolved photoelectron spectroscopy (ARPES), neutron scattering, and NMR. Two types of electronic structure calculations for data interpretation purposes are considered, namely, exact numerical methods for finite clusters (exact diagonalisation and the quantum Monte Carlo method) and approximate schemes for the infinite lattice. As a result, a coherent unified picture emerges, in which the magnetic polaron of a weakly doped antiferromagnetic lattice transforms into a system of Fermi particles dressed by short-range antiferromagnetic type spin fluctuations. In the region of weakly doped metal compositions, deviations from Fermi-liquid properties are seen, such as the failure of Luttinger's theorem, shadowy photoemission bands, and the spin pseudogap effect in spectral and thermodynamic measurements. The situation in the neighbourhood of the insulator-metal concentration transition is described as least understood.

WOS


Доп.точки доступа:
Овчинников, Сергей Геннадьевич