Труды сотрудников института физики

w10=
Найдено документов в текущей БД: 10

    Master equation approach to conductivity of bosonic and fermionic carriers in one- and two-dimensional lattices
/ A. R. Kolovsky // Ann. Phys.-Berlin. - 2014. - Vol. 526, Is. 1/2. - P. 102-111, DOI 10.1002/andp.201300169. - Cited References: 24. - The author express his gratitude to D.N. Maksimov for useful remarks and acknowledge financial support of Russian Academy of Sciences through the SB RAS integration Project No. 29 (Dynamics of atomic Bose-Einstein condensates in optical lattices). . - ISSN 0003-3804. - ISSN 1521-3889
   Перевод заглавия: Проводимость с бозе и ферми носителями в в одномерных и двумерных решетках: подход уравнения для матрицу плотности
РУБ Physics, Multidisciplinary
Рубрики:
CONDUCTANCE
Кл.слова (ненормированные):
diffusive current -- the Hall effect

Аннотация: The master equation approach to diffusive current of bosonic or fermionic carriers in one- and two-dimensional lattices is discussed. This approach is shown to reproduce all known results of the linear response theory, including the integer quantum Hall effect for fermionic carriers. The main advantage of the approach is that it allows to calculate the current beyond the linear response regime where new effects are found. In particular, the Hall current can be inverted by changing orientation of the static force (electric field) relative to the primary axes of the lattice.

Смотреть статью,
Scopus,
WoS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
Siberian Fed Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Коловский, Андрей Радиевич; Russian Academy of Sciences through the SB RAS integration Project [29]

    A perfect spin-filter quantum dot system
/ J. . Fransson, I. . Sandalov, O. . Eriksson // J. Phys.: Condens. Matter. - 2004. - Vol. 16, Is. 16. - P. L249-L254, DOI 10.1088/0953-8984/16/16/L03. - Cited References: 39 . - ISSN 0953-8984
РУБ Physics, Condensed Matter

Аннотация: The discovery of a novel effect in the transport through a QD spin-dependently coupled to magnetic contacts is reported. For a finite range of source-drain voltages the spin projections of the current cancel exactly, resulting in a completely suppressed output current. The spin down current behaves as one normally expects whereas the spin up current becomes negative. As the source-drain voltage is increased the spin up current eventually becomes positive. Thus, tuning the source-drain voltage such that the spin up current vanishes will result in a perfect spin filter.

WOS,
Scopus,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Royal Inst Technol, Dept Phys, KTH, SE-10691 Stockholm, Sweden
Univ Uppsala, Dept Phys, SE-75121 Uppsala, Sweden
RAS, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
Max Planck Inst Phys Complex Syst, D-01187 Dresden, Germany
ИФ СО РАН
Department of Physics, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden
Physics Department, Uppsala University, Box 530, SE-751 21 Uppsala, Sweden
Kirensky Institute of Physics, RAS, 660036 Krasnoyarsk, Russian Federation
Max-Plank-Inst. Phys. Complex Sys., Nothnitzer Stra?e 38, 01187 Dresden, Germany
Dept. of Mat. Sci. and Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Доп.точки доступа:
Sandalov, I.; Eriksson, O.

    Scenario for the 0.7-conductance anomaly in quantum point contacts
/ A. A. Starikov, I. I. Yakimenko, K. F. Berggren // Phys. Rev. B. - 2003. - Vol. 67, Is. 23. - Ст. 235319, DOI 10.1103/PhysRevB.67.235319. - Cited References: 23 . - ISSN 1098-0121
РУБ Physics, Condensed Matter

Аннотация: Effects of spontaneous spin polarization in quantum point contacts (QPC's) are investigated for a realistic semiconductor device structure using the Kohn-Sham local spin-density formalism. At maximal polarization in the contact area, there is a bifurcation into ground-state and metastable solutions. The conduction associated with the metastability is lower than for the normal state. With increasing temperature, the conductance should therefore show an anomalous behavior as observed. For the present device we do not recover resonance or quasibound states.

WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden
LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
ИФ СО РАН

Доп.точки доступа:
Yakimenko, I. I.; Berggren, K. F.

    Effects of non-orthogonality and electron correlations on the time-dependent current through quantum dots
/ J. . Fransson, O. . Eriksson, I. . Sandalov // Phys. Rev. B. - 2002. - Vol. 66, Is. 19. - Ст. 195319, DOI 10.1103/PhysRevB.66.195319. - Cited References: 46 . - ISSN 1098-0121
РУБ Physics, Condensed Matter

Аннотация: Three issues are analyzed in the physics of time-dependent tunneling current through a quantum dot with strongly correlated electrons coupled to two external contact leads: (i) nonorthogonality of the states of electrons in the leads and in the quantum dot, (ii) non-Fermi statistics of the excitations in the quantum dot, and iii) kinematic shift of the quantum dot levels. The contributions from nonorthogonality effectively decrease the mixing interaction between the leads and the quantum dot and the width of the quantum dot level whereas the Gibbs statistics slightly changes the spectral weights of quantum dot levels, and decreases the widths, but does not introduce drastical changes to the current. The kinematic interactions are taken into account within the loop correction. For the case of block signal, the time-dependent current shows oscillations starting at the onset and termination of the bias voltage pulse.

WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Univ Uppsala, Condensed Matter Theory Grp, S-75121 Uppsala, Sweden
RAS, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
ИФ СО РАН

Доп.точки доступа:
Eriksson, O.; Sandalov, I.

    Crossover from regular to irregular behavior in current flow through open billiards
/ K. F. Berggren, A. F. Sadreev, A. A. Starikov // Phys. Rev. E. - 2002. - Vol. 66, Is. 1. - Ст. 16218, DOI 10.1103/PhysRevE.66.016218. - Cited References: 36 . - ISSN 1539-3755
РУБ Physics, Fluids & Plasmas + Physics, Mathematical

Аннотация: We discuss signatures of quantum chaos in terms of distributions of nodal points, saddle points, and streamlines for coherent electron transport through two-dimensional billiards, which are either nominally integrable or chaotic. As typical examples of the two cases we select rectangular and Sinai billiards. We have numerically evaluted distribution functions for nearest distances between nodal points and found that there is a generic form for open chaotic billiards through which a net current is passed. We have also evaluated the distribution functions for nodal points with specific vorticity (winding number) as well as for saddle points. The distributions may be used as signatures of quantum chaos in open systems. All distributions are well reproduced using random complex linear combinations of nearly monochromatic states in nominally closed billiards. In the case of rectangular billiards with simple sharp-cornered leads the distributions have characteristic features related to order among the nodal points. A flaring or rounding of the contact regions may, however, induce a crossover to nodal point distributions and current flow typical for quantum chaos. For an irregular arrangement of nodal points, as for example in the Sinai billiard, the quantum flow lines become very complex and volatile, recalling chaos among classical trajectories. Similarities with percolation are pointed out.

WOS,
Scopus,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden
LV Kirenskii Inst Phys, Krasnoyarsk 660036, Russia
ИФ СО РАН
Dept. of Phys. and Msrmt. Technology, Linkoping University, S-581 83 Linkoping, Sweden
Kirensky Institute of Physics, 660036, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Sadreev, A. F.; Садреев, Алмаз Фаттахович; Starikov, A. A.

    Many-body approach to spin-dependent transport in quantum dot systems
/ J. . Fransson, O. . Eriksson, I. . Sandalov // Phys. Rev. Lett. - 2002. - Vol. 88, Is. 22. - Ст. 226601, DOI 10.1103/PhysRevLett.88.226601. - Cited References: 37 . - ISSN 0031-9007
РУБ Physics, Multidisciplinary

Аннотация: By means of a diagram technique for Hubbard operators, we show the existence of a spin-dependent renormalization of the localized levels in an interacting region, e.g., quantum dot, modeled by the Anderson Hamiltonian with two conduction bands. It is shown that the renormalization of the levels with a given spin direction is due to kinematic interactions with the conduction subbands of the opposite spin. The consequence of this dressing of the localized levels is a drastically decreased tunneling current for ferromagnetically ordered leads compared to that of paramagnetically ordered leads. Furthermore, the studied system shows a spin-dependent resonant tunneling behavior for ferromagnetically ordered leads.

WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Univ Uppsala, Condensed Matter Theory Grp, S-75121 Uppsala, Sweden
RAS, LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
ИФ СО РАН

Доп.точки доступа:
Eriksson, O.; Sandalov, I.

    Simulations of interference effects in gated two-dimensional ballistic electron systems
/ A. P. Jauho, K. N. Pichugin, A. F. Sadreev // Phys. Rev. B. - 1999. - Vol. 60, Is. 11. - P. 8191-8198, DOI 10.1103/PhysRevB.60.8191. - Cited References: 26 . - ISSN 0163-1829
РУБ Physics, Condensed Matter

Аннотация: We present detailed simulations addressing recent electronic interference experiments,where a metallic gate is used to locally modify the Fermi wavelength of the charge carriers. Our numerical calculations are based on a solution of the one-particle Schrodinger equation for a realistic model of the actual sample geometry, including a Poison equation-based determination of the potential due to the gate. The conductance is determined with the multiprobe Landauer-Buttiker formula, and in general we find conductance vs gate voltage characteristics, which closely resemble the experimental traces. A detailed examination based on quantum-mechanical streamlines suggests that the simple one-dimensional semiclassical model often used to describe the experiments has only a limited range of validity, and that certain ''unexpected" periodicities should not be assigned any particular significance, they arise due to the complicated multiple scattering processes occurring in certain sample geometries.

WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Tech Univ Denmark, Mikroelekt Ctr, DK-2800 Lyngby, Denmark
LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
Acad Sci Czech Republ, Inst Phys, CR-16200 Prague, Czech Republic
Abo Akad Univ, Dept Phys, SF-20500 Turku, Finland
ИФ СО РАН

Доп.точки доступа:
Pichugin, K. N.; Пичугин, Константин Николаевич; Sadreev, A. F.; Садреев, Алмаз Фаттахович

    Hall-like effect induced by spin-orbit interaction
/ E. N. Bulgakov [et al.] // Phys. Rev. Lett. - 1999. - Vol. 83, Is. 2. - P. 376-379, DOI 10.1103/PhysRevLett.83.376. - Cited References: 17 . - ISSN 0031-9007
РУБ Physics, Multidisciplinary

Аннотация: We study the effect of spin-orbit interaction on the electron-transport properties of a cross-junction structure. It results in spin polarization of left and right outgoing electron waves. Consequently, the incoming electron wave of a certain polarization induces a voltage drop perpendicular to the direct current flow between the source and drain of the four-terminal cross structure investigated. The resulting Hall-like resistance is estimated to be of the order of 10(-3)-10(-2)h/e(2) for technologically feasible structures. The effect becomes more pronounced in the vicinity of resonances when the Hall-like resistance changes its sign as a function of the Fermi energy.

WOS,
Scopus,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
LV Kirensky Phys Inst, Krasnoyarsk 660036, Russia
Abo Akad Univ, Inst Fys, Dept Phys, SF-20500 Turku, Finland
Acad Sci Czech Republ, Inst Phys, Prague 16253, Czech Republic
ИФ СО РАН

Доп.точки доступа:
Bulgakov, E. N.; Булгаков, Евгений Николаевич; Pichugin, K. N.; Пичугин, Константин Николаевич; Sadreev, A. F.; Садреев, Алмаз Фаттахович; Streda, P.; Seba, P.

    Mixing of bound states with electron transport by a radiation field in waveguides
/ E. N. Bulgakov, A. F. Sadreev // J. Exp. Theor. Phys. - 1998. - Vol. 87, Is. 6. - P. 1058-1067, DOI 10.1134/1.558621. - Cited References: 27 . - ISSN 1063-7761
РУБ Physics, Multidisciplinary

Аннотация: Electron transmission in the two-, three-, and four-terminal nanostructures is considered under the influence of a radiation field. The frequency of the radiation field is tuned to the transition between the energy of a bound state and the Fermi energy of the incident electrons. The radiation induced resonant peaks and dips of the electron transport are exhibited for zero and low magnetic fields. It is shown that rotation of the radiation field polarization can effectively control the electron transport into different electrodes attached to the structures because of the symmetry of the structures. The resonant anomalies of the Hall resistance are found in a weak magnetic field. (C) 1998 American Institute of Physics. [S1063-7761(98)00412-0].

WOS,
Scopus,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia
Abo Akad Univ, Inst Fys, Dept Phys, SF-20500 Abo, Finland
ИФ СО РАН

Доп.точки доступа:
Sadreev, A. F.; Садреев, Алмаз Фаттахович; Булгаков, Евгений Николаевич

    Irregular Aharonov-Bohm oscillations in finite width rings
/ K. N. Pichugin, A. F. Sadreev // Zhurnal Eksperimentalnoi Teor. Fiz. - 1996. - Vol. 109, Is. 2. - P. 546-561. - Cited References: 47 . - ISSN 0044-4510
РУБ Physics, Multidisciplinary


WOS


Доп.точки доступа:
Sadreev, A. F.