Труды сотрудников института физики

w10=
Найдено документов в текущей БД: 30

    Synthesis and luminescence properties of Li2O–Y2O3–TeO2:Eu3+ tellurite glass
/ V. V. Atuchin [et al.] // Mater. Chem. Phys. - 2014. - Vol. 147, Is. 3. - P. 1191-1194, DOI 10.1016/j.matchemphys.2014.07.003. - Cited References: 26. - This study is partly supported by the Ministry of Education and Science of the Russian Federation. . - ISSN 0254-0584. - ISSN 1879-3312
РУБ Materials Science, Multidisciplinary

Аннотация: The Eu3+-doped red-orange emitting phosphor of tellurite glass 0.25Li2O–0.20Y2O3–0.5TeO2–0.05Eu2O3 has been synthesized by the melt quenching method. The amorphous nature of the glass has been verified by XRD measurements. The photoluminescence excitation and emission spectra, the luminescence decay curves have been investigated for the composition. The phosphor can be efficiently excited by the near UV light to realize the intense narrow red emission line (611 nm) corresponding to forced electric dipole transition 5D0 → 7F2 of Eu3+ ions. The Li2O–Y2O3–TeO2:Eu3+glass phosphor is a potential red-orange emitting candidate for the application in WLEDs.

Смотреть статью,
Scopus,
WoS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
SB RAS, Inst Semicond Phys, Lab Opt Mat & Struct, Novosibirsk 630090, Russia
Tomsk State Univ, Funct Elect Lab, Tomsk 634050, Russia
Novosibirsk State Univ, Lab Semicond & Dielect Mat, Novosibirsk 630090, Russia
SB RAS, Inst Geol & Mineral, Lab High Pressure Minerals & Diamond Deposits, Novosibirsk 630090, Russia
Novosibirsk State Univ, Dept Appl Phys, Novosibirsk 630090, Russia
SB RAS, Kirensky Inst Phys, Lab Crystal Phys, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Atuchin, V. V.; Yelisseyev, A. P.; Galashov, E. N.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Ministry of Education and Science of the Russian Federation

    Synthesis and luminescence properties of blue-emitting phosphor Li3c2(PO4)3:Er2+
/ S. X. Yu [et al.] // ECS J. Solid State Sci. Technol. - 2014. - Vol. 3, Is. 8. - P. R159-R163, DOI 10.1149/2.0071408jss. - Cited References: 33. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51002146, No. 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in the University of the Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635) and the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306). Z. G. Xia is also grateful for the financial support from University of Science and Technology Beijing. V.V.A. gratefully acknowledge the Ministry of Education and Science of the Russian Federation for the financial support. . - ISSN 2162-8769. - ISSN 2162-8777
   Перевод заглавия: Синтез и люминесцентные свойства синего люминофора Li3Sc2(PO4)3:Eu2+
РУБ Materials Science, Multidisciplinary + Physics, Applied

Аннотация: A new blue-emitting phosphor Li3Sc2(PO4)3:Eu2+ was synthesized by a high temperature solid-state reaction method, and the crystal structure and photoluminescence properties were investigated in detail. The preferred crystallographic position of the Eu2+ ions in the Li3Sc2(PO4)3 host were determined from the structural analysis and spectroscopic properties. The as-prepared phosphor gave an intense blue emission band centered at 439 nm with the CIE coordinate of (0.1540, 0.0317) upon the excitation of the near ultraviolet light. The critical quenching concentration of Eu2+ in Li3Sc2(PO4)3:Eu2+ was about 15 mol%, and the corresponding concentration quenching mechanism was verified to be the dipole-quadrupole interaction. The fluorescence lifetime of Eu2+ emission and the thermal stable luminescence property have been investigated. Li3Sc2(PO4)3:Eu2+ was found to be a promising candidate as a blue-emitting n-UV convertible phosphor for the application in white light emitting diodes (w-LEDs).

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
China Univ Geosci, Sch Mat Sci & Technol, Beijing 100083, Peoples R China
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
SB RAS, LV Kirensky Phys Inst, Lab Crystal Phys, Krasnoyarsk 660036, Russia
SB RAS, Inst Semicond Phys, Lab Opt Mat & Struct, Novosibirsk 630090, Russia
Tomsk State Univ, Funct Elect Lab, Tomsk 634050, Russia
Novosibirsk State Univ, Lab Semicond & Dielectr Mat, Novosibirsk 630090, Russia

Доп.точки доступа:
Yu, Shixin; Xia, Zhiguo; Molokeev, M. S.; Молокеев, Максим Сергеевич; Miao, Hao; Atuchin, V. V.

    Crystal structure and luminescence property of a novel blue-emitting Cs2xCa2xGd2(1−x)(PO4)2:Eu2+ (x = 0.36) phosphor
/ K. Geng, Z. G. Xia, M. S. Molokeev // Dalton Trans. - 2014. - Vol. 43, Is. 37. - P. 14092-14098, DOI 10.1039/c4dt01578a. - Cited References: 29. - This present work was supported by the National Natural Science Foundation of China (grant no. 51002146, no. 51272242), Natural Science Foundation of Beijing (2132050), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950), the Fundamental Research Funds for the Central Universities (2011YYL131), Beijing Nova Program (Z131103000413047) and Beijing Youth Excellent Talent Program (YETP0635) and the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306). . - ISSN 1477-9226. - ISSN 1477-9234
   Перевод заглавия: Кристаллическая структура и люминесцентные свойства нового синего люминофора Cs2xCa2xGd2(1-x)(PO4)2:Eu2+ (x = 0.36)
РУБ Chemistry, Inorganic & Nuclear

Аннотация: A novel blue-emitting double-phosphate phosphor Cs0.72Ca0.72Gd1.28(PO4)(2):Eu2+ was synthesized by the sol-gel method, and the structure and luminescence properties were investigated in detail. The crystal structure and chemical composition of Cs0.72Ca0.72Gd1.28(PO4)(2) matrix was analyzed and determined based on Rietveld refinements and phase and chemical composition analysis. The composition-optimized Cs0.72Ca0.72Gd1.28(PO4)(2):Eu2+ exhibited strong blue light, peaking at 462 nm upon excitation at 365 nm with the CIE coordinates of (0.139, 0.091). The quenching concentration of Eu2+ in the Cs0.72Ca0.72Gd1.28(PO4)(2) phase was about 0.01 and attributed to the dipole-quadrupole interaction. The thermally stable luminescence properties, fluorescence decay curves and diffuse reflectance spectra of Cs0.72Ca0.72Gd1.28(PO4)(2):Eu2+ phosphors are also discussed, all of which indicate that the Cs0.72Ca0.72Gd1.28(PO4)(2):Eu2+ phosphor is a promising phosphor for application in white-light UV LEDs.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
China Univ Geosci, Sch Mat Sci & Technol, Beijing 100083, Peoples R China
Univ Sci & Technol, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
SB RAS, Kirensky Inst Phys, Lab Crystal Phys, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Xia, Zhiguo; Molokeev, M. S.; Молокеев, Максим Сергеевич

    Discovery of new solid solution phosphors via cation substitution-dependent phase transition in M-3(PO4)2:Eu2+ (M =Ca/Sr/Ba) quasi-binary sets
/ H. P. Ji [et al.] // J. Phys. Chem. C. - 2015. - Vol. 119, Is. 4. - P. 2038-2045, DOI 10.1021/jp509743r. - Cited References:48. - This work was supported by the National Natural Science Foundations ofChina (Grant Nos. 51032007, 51002146, and 51272242), the Research Fundfor the Doctoral Program of Higher Education of China (Grant No.20130022110006), the Natural Science Foundations of Beijing (2132050),the Program for New Century Excellent Talents in University of Ministryof Education of China (NCET-12-0950), the Beijing Nova Program(Z131103000413047), and Beijing Youth Excellent Talent Program(YETP0635). V.V.A. acknowledges the Ministry of Education and Science ofthe Russian Federation for financial support. . - ISSN 1932-7447
   Перевод заглавия: Открытие новых твердых растворов люминофоров посредством фазовых переходов при замещении катионов в квазибинарных составах M3(PO4)2:Eu2+ (M = Ca/Sr/Ba)
РУБ Chemistry, Physical + Nanoscience & Nanotechnology + Materials Science, Multidisciplinary

Аннотация: The cation substitution-dependent phase transition was used as a strategy to discover new solid solution phosphors and to efficiently tune the luminescence property of divalent europium (Eu2+) in the M3(PO4)2:Eu2+ (M = Ca/Sr/Ba) quasi-binary sets. Several new phosphors including the greenish-white SrCa2(PO4)2:Eu2+, the yellow Sr2Ca(PO4)2:Eu2+, and the cyan Ba2Ca(PO4)2:Eu2+ were reported, and the drastic red shift of the emission toward the phase transition point was discussed. Different behavior of luminescence evolution in response to structural variation was verified among the three M3(PO4)2:Eu2+ joins. Sr3(PO4)2 and Ba3(PO4)2 form a continuous isostructural solid solution set in which Eu2+ exhibits a similar symmetric narrow-band blue emission centered at 416 nm, whereas Sr2+ substituting Ca2+ in Ca3(PO4)2 induces a composition-dependent phase transition and the peaking emission gets red shifted to 527 nm approaching the phase transition point. In the Ca3?xBax(PO4)2:Eu2+ set, the validity of crystallochemical design of phosphor between the phase transition boundary was further verified. This cation substitution strategy may assist in developing new phosphors with controllably tuned optical properties based on the phase transition.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
China Univ Geosci, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Sch Mat Sci & Technol, Natl Lab Mineral Mat, Beijing 100083, Peoples R China
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
SB RAS, Kirensky Inst Phys, Lab Crystal Phys, Krasnoyarsk 660036, Russia
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia
SB RAS, Inst Semicond Phys, Lab Opt Mat & Struct, Novosibirsk 630090, Russia
Tomsk State Univ, Funct Elect Lab, Tomsk 634050, Russia
Novosibirsk State Univ, Lab Semicond & Dielect Mat, Novosibirsk 630090, Russia

Доп.точки доступа:
Ji, Haipeng; Huang, Zhaohui; Xia, Zhiguo; Molokeev, M. S.; Молокеев, Максим Сергеевич; Atuchin, V. V.; Fang, Minghao; Liu, Yangai

    Effect of Al/Si substitution on the structure and luminescence properties of CaSrSiO4:Ce3+ phosphors: analysis based on the polyhedra distortion
/ S. H. Miao [et al.] // J. Mater. Chem. C. - 2015. - Vol. 3, Is. 18. - P. 4616-4622, DOI 10.1039/c5tc00339c. - Cited References:30. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51002146, 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in the University of the Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635), the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306) and the excellent tutor section of the Fundamental Research Funds for the Central Universities of China University of Geosciences, Beijing (2652015027). - Cover image: Artwork representing main idea of this article . - ISSN 2050. - ISSN 2050-7534
   Перевод заглавия: Эффект замещения Al/Si на структуру и люминесцентные свойства люминофора CaSrSiO4:Ce3+. Анализ основанный на искажении полиэдров
РУБ Materials Science, Multidisciplinary + Physics, Applied

Аннотация: Blue-emitting CaSrSiO4:Ce3+,Li+ phosphors were prepared by a high temperature solid-state method, and the effect of substituting Al3+ for Si4+ in CaSrSiO4:Ce3+,Li+ has been studied. Crystal structures of the as-prepared Ca1−ySr1−ySi1−xAlxO4:yCe3+,yLi+ phosphors were resolved by the Rietveld method, which suggested that all the samples belonged to the orthorhombic symmetry (Pnma) group of α-CaSrSiO4. The photoluminescence (PL) emission and excitation spectra, the lifetime, and the effect of Al3+ concentration on the PL properties were investigated in detail. The emission peaks of the CaSrSi1−xAlxO4:Ce3+,Li+ (x = 0–0.10) phosphors were red-shifted from 452 to 472 nm with increasing Al/Si ratio. The red-shift of the Ce3+ emission is ascribed to the polyhedra distortion of the cations, originating from the variation in the neighboring [(Si,Al)O4] polyhedra, and the detailed mechanism has been discussed.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
China Univ Geosci, Sch Mat Sci & Technol, Beijing 100083, Peoples R China.
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China.
SB RAS, Kirensky Inst Phys, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.

Доп.точки доступа:
Miao, Shihai; Xia, Zhiguo; Molokeev, M. S.; Молокеев, Максим Сергеевич; Chen, Mingyue; Zhang, Jie; Liu, Quanlin

    Synthesis, crystal structure, and enhanced luminescence of garnet-type Ca3Ga2Ge3O12:Cr3+ by codoping Bi3+
/ C. Y. Liu [et al.] // J. Am. Ceram. Soc. - 2015. - Vol. 98, Is. 6. - P. 1870-1876, DOI 10.1111/jace.13553. - Cited References:24. - This work was supported by the National Natural Science Foundations of China (grant nos. 51002146, 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635), the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306) and Fundamental Research Funds for the Central Universities (FRF-TP-14-005A1). . - ISSN 0002. - ISSN 1551-2916
   Перевод заглавия: Синтез, кристаллическая структура и улучшенная люминесценция граната Ca3Ga2Ge3O12:Cr3+ содопированного Bi3+
РУБ Materials Science, Ceramics

Аннотация: Garnet-type compound Ca3Ga2Ge3O12 and Cr3+-doped or Cr3+/Bi3+ codped Ca3Ga2Ge3O12 phosphors were prepared by a solid-state reaction. The crystal structure of Ca3Ga2Ge3O12 host was studied by X-ray diffraction (XRD) analysis and further determined by the Rietveld refinement. Near-infrared (NIR) photoluminescence (PL) and long-lasting phosphorescence (LLP) emission can be observed from the Cr3+-doped Ca3Ga2Ge3O12 sample, and the enhanced NIR PL emission intensity and LLP decay time can be realized in Cr3+/Bi3+ codped samples. The optimum concentration of Cr3+ in Ca3Ga2Ge3O12 phosphor was about 6 mol%, and optimum Bi3+ concentration induced the energy-transfer (ET) process between Bi3+ and Cr3+ ions was about 30 mol%. Under different excitation wavelength from 280 to 453 nm, all the samples exhibit a broadband emission peaking at 739 nm and the intensity of NIR emission increases owing to the ET behavior from Bi3+ to Cr3+ ions. The critical ET distance has been calculated by the concentration-quenching method. The thermally stable luminescence properties were also studied and the introduction of Bi3+ can also improve the thermal stability of the NIR emission.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China.
China Univ Geosci, Sch Mat Sci & Technol, Beijing 100083, Peoples R China.
SB RAS, LV Kirensky Phys Inst, Lab Crystal Phys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Liu, Chengyin; Xia, Zhiguo; Molokeev, M. S.; Молокеев, Максим Сергеевич; Liu, Quanlin

    New insight into phase formation of MxMg2Al4+xSi5-xO18:Eu2+ solid solution phosphors and its luminescence properties
/ J. Zhou [et al.] // Sci. Rep. - 2015. - Vol. 5. - Ст. 12149, DOI 10.1038/srep12149. - Cited References:17. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51002146, No. 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635), the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306), and Fundamental Research Funds for the Central Universities (FRF-TP-14-005A1). . - ISSN 2045-2322
   Перевод заглавия: Новый взгляд на фазообразование люминофора MxMg2Al4+xSi5-xO18:Eu2+ и его люминесцентные свойства
РУБ Multidisciplinary Sciences

Аннотация: Here we reported the phase formation of MxMg2Al4+xSi5-xO18:Eu2+ (M = K, Rb) solid solution phosphors, where M+ ions were introduced into the void channels of Mg2Al4Si5O18 via Al3+/Si4+ substitution to keep the charge balance. XRD results revealed that the as-prepared phosphors with different M+ contents were iso-structural with Mg2Al4Si5O18 phase. The combined analysis of the Rietveld refinement and high resolution transmission electron microscopy (HRTEM) results proved that M+ ions were surely introduced into the intrinsic channels in Mg2Al4Si5O18. The emission peaks of MxMg2Al4+xSi5-xO18:Eu2+ (M = K, Rb) phosphors with various x values performed a systematic red-shift tendency, which was ascribed to the elongation of [MgO6] octahedra. The temperature stable photoluminescence and internal quantum efficiency (QE) of MxMg2Al4+xSi5-xO18:Eu2+ (M = K, Rb) phosphors were enhanced owing to the filling of M+ in the void channels suggesting a new insight to design the solid solution phosphors with improved photoluminescence properties.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
China Univ Geosci, Sch Mat Sci & Technol, Beijing 100083, Peoples R China.
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China.
RAS, Kirensky Inst Phys, Lab Crystal Phys, SB, Krasnoyarsk 660036, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.

Доп.точки доступа:
Zhou, Jun; Xia, Zhiguo; Chen, Mingyue; Molokeev, M. S.; Молокеев, Максим Сергеевич; Liu, Quanlin

    Ca/Sr ratio dependent structure and up-conversion luminescence of (Ca1-xSrx)In2O4 : Yb3+/Ho3+ phosphors
/ M. Guan [et al.] // RSC Adv. - 2015. - Vol. 5, Is. 73. - P. 59403-59407, DOI 10.1039/c5ra08467a. - Cited References:25. - This present work was supported by the National Natural Science Foundations of China (Grant no. 51202226), the Fundamental Research Funds for the Central Universities (Grant no. 2652014125, 2652013128, 2652013043), and the Research Fund for the Doctoral Program of Higher Education of China (Grant no. 20130022110006). . - ISSN 2046-2069
   Перевод заглавия: Структура зависящая от Ca/Sr соотношения и люминесценция с апконверсией в люминофоре (Ca1-xSrx)In2O4: Yb3+/Ho3+
РУБ Chemistry, Multidisciplinary

Аннотация: Up-conversion (UC) phosphors of (Ca1-xSrx)In2O4 : Yb3+/Ho3+ (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) were prepared. Based on the crystal structure evolution of these series solid solution samples, which were characterized by Rietveld refinement, the variation of UC luminescent properties was discussed in detail. Sr and Ca occupied one position and Yb/Ho dissolved in the In ion site in the (Ca1-xSrx)In2O4 lattice. With increasing Sr substituting Ca atoms, the cell parameters and cell volumes of these samples increased linearly, and distortions of (Ca/Sr)O-8 polyhedron were formed. The distortions on crystal structures showed a negative relation with UC luminescent intensities in these series phosphors.

WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
China Univ Geosci, Natl Lab Mineral Mat, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Sch Mat Sci & Technol, Beijing 100083, Peoples R China.
SB RAS, LV Kirensky Phys Inst, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.
Univ Auckland, Dept Chem & Mat Engn, Auckland 1142, New Zealand.

Доп.точки доступа:
Guan, Ming; Zheng, Hong; Huang, Zhaohui; Ma, Bin; Molokeev, M. S.; Молокеев, Максим Сергеевич; Huang, Saifang; Mei, Lefu

    Crystal structure refinement and luminescence properties of blue-green-emitting CaSrAl2SiO7:Ce3+, Li+, Eu2+ phosphors
/ S. H. Miao [et al.] // J. Mater. Chem. C. - 2015. - Vol. 3, Is. 32. - P. 8322-8328, DOI 10.1039/c5tc01629k. - Cited References:30. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51002146, 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in the University of the Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635), the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306) and the excellent tutor section of the Fundamental Research Funds for the Central Universities of China University of Geosciences, Beijing (2652015027) . - ISSN 2050. - ISSN 2050-7534
   Перевод заглавия: Уточнение кристаллической структуры и люминесцентные свойства сине-зеленого люминофора CaSrAl2SiO7:Ce3+,Li+,Eu2+
РУБ Materials Science, Multidisciplinary + Physics, Applied

Аннотация: Ce3+/Li+, Eu2+ singly doped and Ce3+/Li+/Eu2+-co-doped CaSrAl2SiO7 phosphors have been prepared using the conventional solid-state reaction method. The crystal structure of the melilite-type CaSrAl2SiO7 phase and the preferred crystallographic positions of the doped ions were refined using the Rietveld method. The luminescence properties and energy transfer of CaSrAl2SiO7:Ce3+, Li+, Eu2+ were studied in detail. The Ce3+/Li+ activated CaSrAl2SiO7 phosphor has a strong absorption band in the range of 200-450 nm and shows a blue emission centered at 477 nm. When Eu2+ ions are co-doped with Ce3+/Li+, the emission color of CaSrAl2SiO7:Ce3+, Li+, Eu2+ phosphors under the irradiation of 365 nm can be tuned from blue to green via the energy transfer from Ce3+ to Eu2+ ions. Also the involved energy transfer process and the corresponding mechanism between Ce3+ and Eu2+ have been discussed in detail. These results indicate that the as-reported CaSrAl2SiO7:Ce3+, Li+, Eu2+ phosphors have potential applications in near-UV chip pumped white LEDs.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
China Univ Geosci, Sch Mat Sci & Technol, Beijing 100083, Peoples R China.
Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China.
SB RAS, LV Kirensky Phys Inst, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.

Доп.точки доступа:
Miao, S. H.; Xia, Zhiguo; Molokeev, M. S.; Молокеев, Максим Сергеевич; Zhang, J.; Liu, Q. L.

    Preparation, crystal structure and up-conversion luminescence of Er3+, Yb3+ co-doped Gd2(WO4)3
/ M. Yin [et al.] // RSC Adv. - 2015. - Vol. 5, Is. 89. - P. 73077-73082, DOI 10.1039/c5ra12959a. - Cited References: 43. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51472223), the Fundamental Research Funds for the Central Universities (Grant No. 2652015008), and New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-0951). . - ISSN 2046-2069
   Перевод заглавия: Синтез, кристаллическая структура и люминесценция с апконверсией Gd2(WO4)3 содопированного Er3+, Yb3+
РУБ Chemistry, Multidisciplinary

Аннотация: Up-conversion (UC) phosphors Gd2(WO4)3:Er3+/Yb3+ were synthesized by a high temperature solid-state reaction method. The crystal structure of Gd2(WO4)3:3% Er3+/10% Yb3+ was refined by Rietveld method and it was showed that Er3+/Yb3+ were successfully doped into the host lattice replacing Gd3+. Under 980 nm laser excitation, intense green and weak red emissions centered at around 532 nm, 553 nm, and 669 nm were observed, which were assigned to the Er3+ ion transitions of 4H11/2 → 4I15/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2, respectively. The optimum Er3+ doping concentration was determined as 3 mol% when the Yb3+ concentration was fixed at 10 mol%. The pump power study indicated that the energy transfer from Yb3+ to Er3+ in Er3+, Yb3+ co-doped Gd2(WO4)3 was a two-photon process, and the related UC mechanism of energy transfer was discussed in detail. This journal is © The Royal Society of Chemistry.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, China University of GeosciencesBeijing, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Yin, Mengyan; Liu, Yangai; Mei, Lefu; Molokeev, M. S.; Молокеев, Максим Сергеевич; Huang, Zhaohui; Fang, Minghao

    Effects of composition modulation on the luminescence properties of Eu3+ doped Li1-xAgxLu(MoO4)2 solid-solution phosphors
/ F. Cheng [et al.] // Dalton Trans. - 2015. - Vol. 44, Is. 41. - P. 18078-18089, DOI 10.1039/c5dt02760h. - Cited References: 42. - The present work was supported by the National Natural Science Foundations of China (Grant No. 51272242, 51572023, 51511130035), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), Beijing Youth Excellent Talent Program (YETP0635), the Funds of the State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (RERU2015022), and the excellent tutor section of the Fundamental Research Funds for the Central Universities of China University of Geosciences, Beijing (2-9-2015-028). This work was also partly supported by the Russian Foundation for Basic Research (Grant No. 15-52-53080 GFEN_a). . - ISSN 1477-9226
   Перевод заглавия: Влияние модуляции состава на люминесцентные свойства твердотельного люминофора Li1-xAgxLu(MoO4)2 допированного Eu3+
РУБ Chemistry, Inorganic & Nuclear

Аннотация: Double molybdate scheelite-type solid-solution phosphors Li1−xAgxLu1−y(MoO4)2:yEu3+ were synthesized by the solid state reaction method, and their crystal structures and luminescence properties were investigated in detail. The composition modulation and structural evolution of this series of samples were studied and the selected AgEu(MoO4)2, AgLu(MoO4)2, LiLu(MoO4)2 and LiEu(MoO4)2 phases were analyzed based on the Rietveld refinement. Depending on the variation of the Li/Ag ratio in Li1−xAgxLu1−y(MoO4)2:yEu3+ phosphors, the difference in the luminescence properties of Li1−xAgxLu1−y(MoO4)2:yEu3+ phosphors was ascribed to two factors, one reason could be assigned to the coupling effect and the nonradiative transition between the energy levels of LixAg1−xLu(MoO4)2 matrices and the activator Eu3+, another could be due to the near ultraviolet energy absorption and transmission efficiency between the charge-transfer (CT) band of O2−–Mo6+ and the 4f → 4f emissive transitions of Eu3+. The ultraviolet-visible diffuse reflection spectra (UV-vis DRS) and Raman spectra analysis were also used to verify the above mechanism.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
School of Materials Sciences and Technology, China University of Geosciences, Beijing, China
School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, Krasnoyarsk, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, Russian Federation
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, China

Доп.точки доступа:
Cheng, F.; Xia, Zhiguo; Molokeev, M. S.; Молокеев, Максим Сергеевич; Jing, X.

    Microwave sol–gel synthesis of CaGd2(MoO4)4:Er3+/Yb3+ phosphors and their upconversion photoluminescence properties
/ C. S. Lim [et al.] // J. Am. Ceram. Soc. - 2015. - Vol. 98, Is. 10. - P. 3223-3230, DOI 10.1111/jace.13739. - Cited References:69. - This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2014-046024). VVA and ASA are partially supported by the Ministry of Education and Science of the Russian Federation. . - ISSN 0002. - ISSN 1551-2916
   Перевод заглавия: Микроволновый золь-гель синтез люминофоров CaGd2(MoO4)4:Er3+/Yb3+ и их люминесцентные свойства с апконверсией
РУБ Materials Science, Ceramics

Аннотация: CaGd2(MoO4)4:Er3+/Yb3+ phosphors with the doping concentrations of Er3+ and Yb3+ (x = Er3+ + Yb3+, Er3+ = 0.05, 0.1, 0.2, and Yb3+ = 0.2, 0.45) have been successfully synthesized by the microwave sol–gel method, and the crystal structure refinement and upconversion photoluminescence properties have been investigated. The synthesized particles, being formed after heat-treatment at 900°C for 16 h, showed a well-crystallized morphology. Under the excitation at 980 nm, CaGd2(MoO4)4:Er3+/Yb3+ particles exhibited strong 525 and 550-nm emission bands in the green region and a weak 655-nm emission band in the red region. The Raman spectrum of undoped CaGd2(MoO4)4 revealed about 15 narrow lines. The strongest band observed at 903 cm−1 was assigned to the ν1 symmetric stretching vibration of MoO4 tetrahedrons. The spectra of the samples doped with Er and Yb obtained under 514.5 nm excitation were dominated by Er3+ luminescence preventing the recording Raman spectra of these samples. Concentration quenching of the erbium luminescence at 2H11/2→4I15/2 and 4S3/2→4I15/2 transitions in the CaGd2(MoO4)4:Er3+/Yb3+ crystal structure was established to be approximately at the 10 at.% doping level.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Hanseo Univ, Dept Adv Mat Sci & Engn, Seosan 356706, South Korea.
SB RAS, Inst Semicond Phys, Lab Opt Mat & Struct, Novosibirsk 630090, Russia.
Tomsk State Univ, Funct Elect Lab, Tomsk 634050, Russia.
Novosibirsk State Univ, Lab Semicond & Dielect Mat, Novosibirsk 630090, Russia.
SB RAS, Kirensky Inst Phys, Lab Coherent Opt, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Dept Photon & Laser Technol, Krasnoyarsk 660079, Russia.
SB RAS, Kirensky Inst Phys, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.
SB RAS, Kirensky Inst Phys, Lab Mol Spect, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Lim, Chang Sung; Atuchin, V. V.; Aleksandrovsky, A. S.; Александровский, Александр Сергеевич; Molokeev, M. S.; Молокеев, Максим Сергеевич; Oreshonkov, A. S.; Орешонков, Александр Сергеевич

    Photoluminescence of monoclinic Li3AlF6 crystals under vacuum ultraviolet and soft X-ray excitations
/ V. A. Pustovarov [et al.] // Opt. Mater. - 2015. - Vol. 49. - P. 201-207, DOI 10.1016/j.optmat.2015.09.011. - Cited References: 49. - This work was partly supported by the Ministry of Education and Science of the Russian Federation (the basic part of the government mandate); Center of Excellence "Radiation and Nuclear Technologies" (Competitiveness Enhancement Program of Ural Federal University, Russia), HASYLAB DESY (Projects Nos. 20110843, 20080119EC), European Social Fund ("Mobilitas" program, MJD219), Estonian Research Council (Institutional Research Funding IUT02-26) and Baltic Science Link project coordinated by the Swedish Research Council, VR . - ISSN 0925-3467
   Перевод заглавия: Люминесценция моноклинных кристаллов Li3AlF6 под вакуумным ультрафиолетом и мягким рентгеновским излучением
РУБ Materials Science, Multidisciplinary + Optics

Аннотация: Using Bridgman technique we have grown monoclinic β-LiAF crystals suitable for optical studies, performed XRD-identification and Rietveld refinement of the crystal structure and carried out a photoluminescence study upon vacuum ultraviolet (VUV) and extreme ultraviolet (XUV)-excitations, using the low-temperature (T = 7.2 K) time-resolved VUV-spectroscopy technique. The intrinsic PL emission band at 340–350 nm has been identified as due to radiative recombination of self-trapped excitons. The electronic structure parameters were determined: bandgap E g ≈ 12.5 eV, energy threshold for creation of unrelaxed excitons 11.8 eV < E n < 12.5 eV . The PL emission bands at 320–325 and 450 nm were attributed to luminescence caused by lattice defects. We have discovered an efficient excitation of PL emission bands in the energy range of interband transitions ( E ex > 13.5 eV), as well as in the energy range of core transitions at 130 eV. We have revealed UV–VUV PL emission bands at 170 and 208 nm due to defects. A reasonable assumptions about the origin of the UV–VUV bands were discussed.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Ural Federal University, 19, Mira Street, Yekaterinburg, Russian Federation
Institute of Physics, University of Tartu, 14c, Ravila Street, Tartu, Estonia
Kirensky Institute of Physics, SB RAS, Akademgorodok 50, Krasnoyarsk, Russian Federation
Far Eastern State Transport University, 47, Serysheva Street, Khabarovsk, Russian Federation
Institute of Geology and Mineralogy, SB RAS, 43, Russkaya Street, Novosibirsk, Russian Federation
Novosibirsk National Research University, 2, Pirogova Street, Novosibirsk, Russian Federation

Доп.точки доступа:
Pustovarov, V. A.; Пустоваров В. А.; Ogorodnikov, I. N.; Огородников И. Н.; Omelkov, S. I.; Омелков С. И.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Kozlov, A. V.; Козлов А. В.; Isaenko, L. I.; Исаенко Л. И.

    Insights into Ba4Si6O16 structure and photoluminescence tuning of Ba4Si6O16:Ce3+,Eu2+ phosphors
/ Chen M. [et al.] // J. Mater. Chem. C. - 2015. - Vol. 3, Is. 48. - P. 12477-12483, DOI 10.1039/c5tc03271g. - Cited References: 39. - This work was supported by the National Natural Science Foundations of China (Grant No. 51572023 and 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950), Beijing Nova Program (Z131103000413047), the Funds of the State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University (KF201306), and Fundamental Research Funds for the Central Universities (FRF-TP-14-005A1). . - ISSN 2050-7534
   Перевод заглавия: Исследования структуры Ba4Si6O16 и люминесцентных свойств Ba4Si6O16:Ce3+,Eu2+
РУБ Materials Science, Multidisciplinary + Physics, Applied

Аннотация: The versatile polymorphism and chemical compositions of barium silicates have been studied for a long time and their crystal structures have been established. Herein, we focused on the understanding of the crystal structure of the Ba4Si6O16 phase and the structural correlation of Ba4Si6O16 and Ba2Si3O8; moreover, the luminescence properties of Ce3+,Eu2+-co-activated Ba4Si6O16 phosphors have been discussed. Ba4Si6O16:Ce3+,Eu2+ phosphors show tunable blue-green emission upon excitation with 365 nm ultraviolet (UV) light. The blue emission originates from Ce3+, whereas the bluish-green emission is ascribed to Eu2+, and variation in the emission peak wavelength from 442 to 497 nm can be achieved by properly tuning the Ce3+/Eu2+ ratio. Energy transfer from Ce3+ to Eu2+ in the Ba4Si6O16 host has been validated by the variation of emission spectra as well as the variation of Ce3+ decay lifetimes with increasing Eu2+ concentration, and the energy transfer mechanism is demonstrated to be a resonant type via a dipole-dipole process. The results suggest that Ba4Si6O16:Ce3+,Eu2+ phosphors are potential candidates as a blue-green component for UV-excited white light-emitting diodes. © 2015 The Royal Society of Chemistry.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, Krasnoyarsk, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, Russian Federation

Доп.точки доступа:
Chen M.; Xia Z.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Liu Q.
Свободных экз. нет

    Facile solution-precipitation assisted synthesis and luminescence property of greenish-yellow emitting Ca6Ba(PO4)4O:Eu2+ phosphor
/ H. Ji [et al.] // Mater. Res. Bull. - 2016. - Vol. 75. - P. 233-238, DOI 10.1016/j.materresbull.2015.11.055. - Cited References: 22. - This work was partly supported by the National Natural Science Foundations of China (grant nos. 51272242, 51472222, 51511130035), the Research Fund for the Doctoral Program of Higher Education of China (grant no. 20130022110006), and the Russian Foundation for Basic Research (grant no. 15-52-53080 GFEN_a). VVA was partly supported by the Ministry of Education and Science of the Russian Federation . - ISSN 0025-5408
   Перевод заглавия: Легкий синтез с помощью осаждения раствора и люминесцентные свойства люминофора Ca6Ba(PO4)4O:Eu2+ излучающего зеленовато-желтый свет.
РУБ Materials Science, Multidisciplinary

Аннотация: Greenish-yellow emitting microcrystalline Ca6Ba(PO4)4O:Eu2+ phosphor was successfully prepared by a solution-precipitation assisted high temperature reaction method. Phase structure, morphology and/or luminescence properties of the precursor and the as-prepared phosphors were characterized. The phase-pure Ca6Ba(PO4)4O:Eu2+ phosphors were obtained with smooth grain surface and particle size of 2–8 μm. Ca6Ba(PO4)4O:Eu2+ exhibits bright greenish-yellow color emission with its maximum at 540 nm upon UV-blue light excitation. The maximum position of the broad emission band is independent on the calcination temperature. The emission intensity increases with increasing calcination temperature due to improved crystallinity. Besides, the presence of two Eu2+ emission centers in the Ca6Ba(PO4)4O crystal lattice was confirmed and the coordination effects are considered concerning the roles of isolated O atoms and those from the PO4 tetrahedra.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, Beijing, China
Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, Krasnoyarsk, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, Russian Federation
Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk, Russian Federation
Functional Electronics Laboratory, Tomsk State University, Tomsk, Russian Federation
Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk, Russian Federation

Доп.точки доступа:
Ji, H.; Huang, Z.; Xia, Z.; Xie, Y; Molokeev, M. S.; Молокеев, Максим Сергеевич; Atuchin, V. V.
Свободных экз. нет

    Crystal structure evolution and luminescence properties of color tunable solid solution phosphors Ca2+xLa8-x(SiO4)6-x(PO4)xO2:Eu2+
/ Y. Xia [et al.] // Dalton Trans. - 2016. - Vol. 45, Is. 3. - P. 1007-1015, DOI 10.1039/c5dt03786g. - Cited References: 42. - This work was sponsored by National Natural Science Foundation of China (Grant No. 51472223), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-0951) and the Fundamental Research Funds for the Central Universities (Grant No. 2652015020). . - ISSN 1477-9226
   Перевод заглавия: Изменение кристаллической структуры и люминесцентных свойств люминофоров Ca2+xLa8-x(SiO4)6-x(PO4)xO2:Eu2+ с управляемым цветом
РУБ Chemistry, Inorganic & Nuclear

Аннотация: A series of apatite solid solution phosphors Ca2+xLa8-x(SiO4)6-x(PO4)xO2:Eu2+ (x = 0,2,4,6) were synthesized by a conventional higherature solid-state reaction. The phase purity was examined using XRD, XPS and XRF. The crystal structure information, such as the concentration, cell parameters and occupation rate, was analyzed using a Rietveld refinement, demonstrating that the Eu2+ activated the Ca2La8(SiO4)6O2 and Ca8La2(PO4)6O2 to form continuous solid solution phosphors. Different behaviors of luminescence evolution in response to structural variation were verified among the series of phosphors. Two kinds of Eu2+ ion sites were proved using low temperature PL spectra (8k) and room temperature decay curves. The substitution of large La3+ ions by small Ca2+ ions induced a decreased crystal field splitting of the Eu2+ ions, which caused an increase in emission energy from the 5d excited state to the 4f ground state and a resultant blue-shift from 508 nm to 460 nm. Therefore, with the crystal structure evolution, the emitted color of the series of phosphors could be tuned from green to blue by adjusting the ratio of Ca/La. © 2016 The Royal Society of Chemistry.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, Beijing, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, Krasnoyarsk, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, Russian Federation

Доп.точки доступа:
Xia, Y.; Chen, J.; Liu, Y.-G.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Guan, M.; Huang, Z.; Fang, M.

    Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution
/ Z. Xia [et al.] // J. Am. Chem. Soc. - 2016. - Vol. 138, Is. 4. - P. 1158-1161, DOI 10.1021/jacs.5b12788. - Cited References: 23. - Work performed by Z.X. and Q.L. was supported by the National Natural Science Foundation of China (51272242 and 51572023), the Program for New Century Excellent Talents in the University of the Ministry of Education of China (NCET-12-0950), and the Beijing Nova Program (Z131103000413047). Work performed by G.L., J.W., Z.M., M.B., and D.J.M. at Argonne National Laboratory was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) through Grant DE-AC02-06CH11357 for research on heavy elements chemistry and materials sciences. TEM was accomplished in part at the Center for Nanoscale Materials, a DOE Office of Science User Facility under Contract DE-AC02-06CH11357. Sector 20 operations at APS are supported by DOE and the Canadian Light Source, with additional support from the University of Washington. G.L. acknowledges travel support from the CAS/SAFEA International Partnership Program for Creative Research Teams. K.R.P. gratefully acknowledges support from the National Science Foundation (DMR-1307698). . - ISSN 0002-7863
   Перевод заглавия: Управление люминесценцией за счет наносегрегации катионов в твердом растворе (CaMg)x(NaSc)1-xSi2O6
РУБ Chemistry, Multidisciplinary

Аннотация: Controlled photoluminescence tuning is important for the optimization and modification of phosphor materials. Herein we report an isostructural solid solution of (CaMg)x(NaSc)1-xSi2O6 (0 < x < 1) in which cation nanosegregation leads to the presence of two dilute Eu2+ centers. The distinct nanodomains of isostructural (CaMg)Si2O6 and (NaSc)Si2O6 contain a proportional number of Eu2+ ions with unique, independent spectroscopic signatures. Density functional theory calculations provided a theoretical understanding of the nanosegregation and indicated that the homogeneous solid solution is energetically unstable. It is shown that nanosegregation allows predictive control of color rendering and therefore provides a new method of phosphor development. © 2016 American Chemical Society.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
Chemical Sciences and Engineering Division, Argonne, IL, United States
Center for Nanoscale Materials, Nanoscience and Technology Division, Argonne, IL, United States
Nuclear Engineering Division, Argonne, IL, United States
X-ray Science Division, Argonne National Laboratory, Argonne, IL, United States
Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, Krasnoyarsk, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, Russian Federation
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, United States

Доп.точки доступа:
Xia, Z.; Liu, G.; Wen, J.; Mei, Z.; Balasubramanian, M.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Peng, L.; Gu, L.; Miller, D. J.; Liu, Q.; Poeppelmeier, K. R.

    Preparation and luminescence properties of the blue-emitting phosphor BaBPO5:Eu2+
/ L. Zhang [et al.] // Sci. Adv. Mater. - 2016. - Vol. 8, Is. 5. - P. 1086-1092, DOI 10.1166/sam.2016.2704. - Cited References: 22. - This work was financially supported by the National Natural Science Foundation of China (NSFC Grant no. 51172216) and the Fundamental Research Funds for the Central Universities (Grant no. 2652015022). . - ISSN 1947-2935
   Перевод заглавия: Синтез и люминесцентные свойства синего люминофора BaBPO5:Eu2+
РУБ Nanoscience & Nanotechnology + Physics, Applied + Physics, Applied

Аннотация: Blue-emitting BaBPO5:xEu2+ phosphors were prepared by a high-temperature solid-state reaction route. The crystal phase, luminescence properties, lifetime, and thermal stability were investigated, respectively. The phase analysis indicated that BaBPO5 crystallize with the structure of stillwellite-type compounds. Under the excitation at 310 nm, the phosphor exhibited an asymmetric broad-band blue emission with peak at 410 nm, which was ascribed to the 4f-5d transition of Eu2+. It was further calculated that the dipole-dipole interactions were responsible for a concentration quenching effect in BaBPO5:xEu2+ phosphors at x = 0.08. The lifetime decreased with the increasing concentration of Eu2+ ions. The temperature-dependent emission spectra indicated an excellent thermal stability of the BaBPO5:0.08Eu2+ samples. Surface morphology and CIE coordinate were also investigated. All the properties assessed indicated that the developed blue-emitting BaBPO5:Eu2+ phosphor is a good candidate for application in white-light emitting diodes. © 2016 by American Scientific Publishers.

Смотреть статью,
Scopus,
WOS

Держатели документа:
School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences (Beijing), Beijing, China
National Engineering Research Center for Rare Earth Materials, General Research Institute for Nonferrous Metals, Grirem Advanced Materials Co., Ltd., Beijing, China
Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, Krasnoyarsk, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, Russian Federation

Доп.точки доступа:
Zhang, L.; Fang, M.; Huang, Z.; Liu, Y.; Min, X.; Tang, H.; Chen, K.; Guan, M.; Molokeev, M. S.; Молокеев, Максим Сергеевич

    A novel single-phase white light emitting phosphor Ca9La(PO4)5(SiO4)F2:Dy3+: Synthesis, crystal structure and luminescence properties
/ H. Liu [et al.] // RSC Adv. - 2016. - Vol. 6, Is. 29. - P. 24577-24583, DOI 10.1039/c5ra23348h. - Cited References: 33. - We gratefully acknowledge the financial support by the National Natural Science Foundations of China (Grant no. 41172053), the Fundamental Research Funds for the Central Universities (Grant no. 2652013043), and Science and Technology Innovation Fund of the China University of Geosciences (Beijing). . - ISSN 2046-2069
   Перевод заглавия: Новый однофазный люминофор Ca9La(PO4)5(SiO4)F2:Dy3+, излучающий белый свет: синтез, кристаллическая структура и люминесцентные свойства
РУБ Chemistry, Multidisciplinary

Аннотация: A novel single-phase white light emitting phosphor Ca9La(PO4)5(SiO4)F2:Dy3+ was prepared through traditional high-temperature solid state technology. The crystal structures of Ca9La(PO4)5(SiO4)F2 with or without Dy3+ ions were refined by the Rietveld method. The diffuse reflection spectra, excitation spectra, emission spectra, and decay times were characterized to investigate the photoluminescence properties for application in white light-emitting diodes. The results showed that the Ca9La(PO4)5(SiO4)F2:Dy3+ phosphor could efficiently assimilate n-UV light and emit blue (∼485 nm) and yellow light (∼580 nm), originating from the f-f transitions of Dy3+. The critical Dy3+ quenching concentration (QC) was determined to be about 15 mol%, and the corresponding QC mechanism was verified to be the dipole-dipole interaction. Additionally, the emission colors of all samples were located close to the ideal white light region, and the optimal chromaticity coordinates and correlated color temperature (CCT) were determined to be (x = 0.338, y = 0.336) and 5262 K. All the above results indicate that the as-prepared Ca9La(PO4)5(SiO4)F2:Dy3+ phosphor could serve as a promising candidate for white-light n-UV-LEDs. © The Royal Society of Chemistry 2016.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, China
Laboratory of Crystal Physics, Institute of Physics, SB RAS, Krasnoyarsk, Russian Federation
Department of Physics, Far Eastern State Transport University, Khabarovsk, Russian Federation

Доп.точки доступа:
Liu, H.; Liao, L.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Guo, Q.; Zhang, Y.; Mei, L.

    Crystal structure and luminescence properties of green-emitting Sr1−xAl12O19:xEu2+ phosphors
/ B. Ma [et al.] // Ceram. Int. - 2016. - Vol. 42, Is. 5. - P. 5995-5999, DOI 10.1016/j.ceramint.2015.12.149. - Cited References: 30. - This work was supported by the National Natural Science Foundation of China (Grant nos. 51032007 and 51372232) and the Fundamental Research Funds for the Central Universities (Grant no. 2652015024). . - ISSN 0272-8842. - ISSN 1873-3956
   Перевод заглавия: Кристаллическая структура и люминесцентные свойства зеленого люминофора Sr1-xAl12O19:xEu2+
РУБ Materials Science, Ceramics

Аннотация: In this paper, a series of novel luminescent Sr1−xAl12O19:xEu2+ phosphors were synthesized by a high temperature solid-state reaction. The phase structure, photoluminescence (PL) properties, as well as the decay curves were investigated. The quenching concentration of Eu2+ in SrAl12O19 was about 0.15 (mol). Upon excitation at 378 nm, the composition-optimized Sr0.85Al12O19:0.15Eu2+ exhibited strong broad-band green emission at 530 nm with the CIE chromaticity (0.2917, 0.5736). The results indicate that Sr1−xAl12O19:xEu2+ phosphors have potential applications as green-emitting phosphors for UV-pumped white-light LEDs.

Смотреть статью,
Scopus,
WOS,
Для получение полного текста обратитесь в библиотеку

Держатели документа:
China Univ Geosci, Sch Mat Sci & Technol, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Natl Lab Mineral Mat, Beijing 100083, Peoples R China.
SB RAS, Inst Phys, Lab Crystal Phys, Krasnoyarsk 660036, Russia.
Far Eastern State Transport Univ, Dept Phys, Khabarovsk 680021, Russia.

Доп.точки доступа:
Ma, Bin; Guo, Q. F.; Molokeev, M. S.; Молокеев, Максим Сергеевич; Lv, Zhenfei; Yao, Jun; Mei, Lefu; Huang, Zhaohui