Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 1
519.6
E27

    Efficient method of calculating layered conical shells with lagrange multigrid elements use
[Text] : статья / G. I. Rastorguev, A. N. Grishanov, A. D. Matveev // Сибирский журнал науки и технологий. - 2018. - Т. 19, № 3. - P423-431, DOI 10.31772/2587-6066-2018-19-3-423-431 . - ISSN 2587-6066
   Перевод заглавия: Эффективный метод расчета слоистых конических оболочек с применением лагранжевых многосеточных элементов
УДК

Аннотация: The increased requirements for strength calculations of space-rocket and aviation technology designs cause the need for the development and improvement of approximate solutions for elasticity theory tasks with small error algo- rithms. The article considers the numerical method of calculating elastic layered conical shells (LCS) of various thickness under static loading which are widely used in space-rocket technology. The suggested method uses three-dimensional curvilinear Lagrange multigrid finite elements (MGFE). A system of nested grids is used for MGFE constructing. The fine grid is generated by the basic partition that takes into account MGFE heterogeneous structure. The basic partition dimensionality is reduced with the help of large grids which leads to the system of linear algebraic equations of the small dimension finite elements method. Three-dimensional elasticity theory equations use allows to apply MGFE for calculating LCS of any thickness. Displacements in MGFE are approximated by Lagrange polynomials which, in con- trast to power polynomials, gives the opportunity to design big size three-dimensional thin shell elements. Lagrange polynomials nodes coincide in shell thickness with the nodes of MGFE large grids which lie on the shared borders of multi-module layers. The efficiency of the presented method is that the suggested MGFE generate small dimension discrete models that require 10<sup>3</sup>-10<sup>7</sup> times less electronic computing machine (ECM) memory than basic models. The suggested law of dis- crete models grinding generates uniform and fast convergence of numerical solutions which allows to make solutions with the specified (small) error. Examples of LCS calculating (whole ones as well as with holes) under axisymmetric and local loading are given. Comparative analysis of solutions obtained with the help of MGFE, single-grid finite elements and the program com- plex ANSYS has been conducted.
Повышенные требования к прочностным расчетам конструкций ракетно-космической и авиационной техники вызывают необходимость разработки и совершенствования алгоритмов приближенных решений за- дач теории упругости с малой погрешностью. Рассматривается численный метод расчета упругих слоистых конических оболочек (СКО) различной толщины при статическом нагружении, которые широко применяются в ракетно-космической технике. В предлагаемом методе используются трехмерные криволинейные лагранжевые многосеточные конечные элементы (МнКЭ). При построении МнКЭ используется система вложенных сеток. Мелкая сетка порождена базовым разбиением, которое учитывает неоднородную структуру МнКЭ. С помощью крупных сеток пони- жается размерность базового разбиения, что приводит к системе линейных алгебраических уравнений мето- да конечных элементов малой размерности. Использование уравнений трехмерной теории упругости позволя- ет применять МнКЭ для расчета СКО любой толщины. Перемещения в МнКЭ аппроксимируются полиномами Лагранжа, что в отличие от степенных полиномов дает возможность проектировать трехмерные тонкие оболочечные элементы больших размеров. Узлы полиномов Лагранжа по толщине оболочки совпадают с узла- ми крупных сеток МнКЭ, которые лежат на общих границах разномодульных слоев. Эффективность изложенного метода заключается в том, что предлагаемые МнКЭ порождают дискрет- ные модели малой размерности, для которых требуется в 10<sup>3</sup>-10<sup>7</sup> раз меньше объема памяти ЭВМ, чем для базовых моделей. Предложенный закон измельчения дискретных моделей порождает равномерную и быструю сходимость численных решений, что позволяет строить решения с заданной (малой) погрешностью. Приведены примеры расчетов СКО (цельных и с отверстиями) при осесимметричном и локальном нагру- жениях. Выполнен сравнительный анализ решений, полученных с помощью МнКЭ, односеточных конечных элементов и программного комплекса ANSYS

РИНЦ

Держатели документа:
Institute of Computational Modeling SB RAS
Novosibirsk State Technical University

Доп.точки доступа:
Rastorguev, G. I.; Расторгуев Г.И.; Grishanov, A. N.; Гришанов А.Н.; Matveev, A. D.; Матвеев А.Д.