Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 3
539.3
М 54

    Метод многосеточных конечных элементов в расчетах трехмерных однородных и композитных тел
[Текст] : научное издание / Александр Данилович Матвеев // Ученые записки Казанского университета. Серия: Физико-математические науки. - 2016. - Т. 158, № 4. - С. 530-543 . - ISSN 2541-7746
   Перевод заглавия: Multigrid Finite Element Method in Calculation of 3D Homogeneous and Composite Solids
УДК

Аннотация: В работе предложен метод многосеточных конечных элементов для расчета упругих трехмерных однородных и композитных тел при статическом нагружении. Предлагаемый метод построен на основе алгоритмов метода конечных элементов с применением однородных и композитных трехмерных многосеточных конечных элементов (МнКЭ). Рассмотрены процедуры построения МнКЭ. имеющего форму прямоугольного параллелепипеда и сложную форму. Достоинства МнКЭ состоят в том, что они учитывают по правилам микроподхода неоднородную и микронеоднородную структуры тел, описывают трехмерное напряженно-деформированное состояние (без упрощающих гипотез) в однородных и композитных телах, порождают дискретные модели малой размерности и позволяют получать численные решения с малой погрешностью.
In the present paper, a method of multigrid finite elements to calculate elastic three-dimensional homogeneous and composite solids under static loading has been suggested. The method has been developed based on the finite element method algorithms using homogeneous and composite three-dimensional multigrid finite elements (MFE). The procedures for construction of MFE of both rectangular parallelepiped and complex shapes have been shown. The advantages of MFE are that they take into account, following the rules of the microapproach, heterogeneous and microhomogeneous structures of the bodies, describe the three-dimensional stress-strain state (without any simplifying hypotheses) in homogeneous and composite solids, as well as generate small dimensional discrete models and numerical solutions with a high accuracy.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Матвеев, Александр Данилович
539.3
М 54

    Метод многосеточных конечных элементов в расчетах композитных пластин и балок
[Текст] : научное издание / А. Д. Матвеев // Вестник Красноярского государственного аграрного университета. - 2016. - № 12. - С. 93-100 . - ISSN 1819-4036
УДК

Аннотация: Для расчета напряженного состояния упру-гих трехмерных композитных пластин и балок при статическом нагружении предложен ме-тод многосеточных конечных элементов, ко-торый реализуется на основе алгоритмов метода конечных элементов (МКЭ) с примене-нием трехмерных многосеточных конечных элементов (МнКЭ), имеющих неоднородную и микронеоднородную структуру. Отличие МнКЭ от существующих конечных элементов (КЭ) состоит в следующем. При построении -сеточного КЭ используются вложенных сеток. Мелкая сетка порождает разбиение, которое учитывает неоднородную структуру и форму МнКЭ, остальные крупные сет-ки применяются для понижения размерности МнКЭ, причем с увеличением размерность МнКЭ уменьшается. Особенность и достоин-ство МнКЭ состоят в том, что при построе-нии МнКЭ используются сколь угодно мелкие базовые разбиения композитных пластин, ба-лок, состоящих из односеточных КЭ 1-го по-рядка, т.е. по сути используется микроподход в конечноэлементной форме. Такие мелкие разбиения позволяют учитывать в МнКЭ, т.е. в базовых дискретных моделях композитных пластин, балок, сложную неоднородную, мик-ронеоднородную структуру и форму, сложный характер нагружения и закрепления и описы-вать сколь угодно точно напряженное дефор-мированное состояние уравнениями трехмер-ной теории упругости без введения дополни-тельных упрощающих гипотез. Краткая суть МнКЭ состоит в следующем. На базовом раз-биении (на мелкой сетке) сеточного конеч-ного элемента, определяем полную потенциальную энергию как функцию мно-гих переменных, которыми являются узловые перемещения мелкой сетки. На остальных крупных сетках (вложенных в мелкую сетку) строим по МКЭ функции перемещений, которые используем для понижения размерно-сти функции что позволяет проектиро-вать МнКЭ малой размерности. Изложены процедуры построения МнКЭ формы прямо-угольного параллелепипеда, пластинчатого и балочного типов. Достоинства МнКЭ состо-ят в том, что они порождают дискретные модели малой размерности и сеточные реше-ния c малой погрешностью. Приведен пример расчета многослойной пластины с примене-нием трехмерных 3- сеточных КЭ.
To calculate the stress state of elastic three-dimensional plates and beams under static loading a multigrid finite element method implemented on the basis of algorithms of finite element method (FEM), using three-dimensional multigrid finite ele-ments (MFE) of heterogeneous structure has been provided. The differences of MFE from currently available finite elements (FE) are as follows. When building - grid FE of nested grids is used. The fine grid generates a partition taking into ac-count inhomogeneous structure and shape of MFE, the other large grids are applied to reduce MFE dimensionality, with MFE dimension decreas-ing when is increasing. The peculiarities and advantages of MFE are to develop MFE, arbitrarily small basic partitions of composite plates and beams containing the 1st order single-grid FE can be used, i.e. in fact, the finite element micro ap-proach is applied. These partitions allow one to take into account in MFE the complex heterogene-ous and microscopically inhomogeneous structure, shape and complex loading and fixing nature and to describe the stress and stain state by the equa-tions of three-dimensional elastic theory without any additional simplifying hypotheses. The essence of MFE is as follows. At a basic partition (on the fine grid) of - grid FE, the total potential energy as a function of many variables depend-ing on the fine grid nodal displacements has been determined. On the other coarse grids (en-closed in the fine one), the displacement functions used to reduce the dimension of the function that allows one developing MFE of small dimension are found by FEM. The procedures of developing MFE of rectangular parallelepiped of plate and beam types are given. The advantages of MFE are: they produce small dimensional discrete models and high accuracy numerical solutions. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model are given, with that having 623 millions of FEM nodal unknowns.

РИНЦ

Держатели документа:
Института вычислительного моделирования СО РАН

Доп.точки доступа:
Матвеев, А.Д.; Matveev A.D.
539.3
M94

    Multigrid finite elements in the calculations of multilayer cylindrical shells
: статья / A. D. Matveev, A. N. Grishanov // Сибирский журнал науки и технологий. - 2018. - Т. 19, № 1. - P27-36 . - ISSN 2587-6066
   Перевод заглавия: Многосеточные конечные элементы в расчетах многослойных цилиндрических оболочек
УДК

Аннотация: An effective numerical method for calculating linearly elastic multilayer cylindrical shells under static loading implemented on the basis of Finite Element Method (FEM) procedures using the multilayer curved Lagrangian multi- grid finite elements (MFE) of the shell type was proposed. Such shells are widely used in rocket-space and aircraft engineering. MFE are developed in local Cartesian coordinate systems based on small (basic) shell partitions that take into account their heterogeneous structure, irregular shape, combined loading and fixing. The stress strained state (SSS) in the MFE was described by the equations of the three-dimensional elasticity problem without using the addi- tional kinematical and static hypotheses, which allow one to use MFE for the shells of various thicknesses to be calcu- lated. The procedure of constructing the Langrage polynomials in local curvilinear coordinate systems used to develop the shell MFE is presented. The displacements in the MFE were approximated by the power and Lagrange polynomials of different orders. When constructing a n -grid finite element (FE), n ≥ 2, n-nested grids were used. The fine grid was generated by the basic partition of the MFE; the other (coarse) grids were used to reduce its dimension. According to the method, the nodes of the coarse MFE grids are located on the common boundaries of the different modular layers of the shell. The proposed law of the expansion in the number of discrete models using MFE with a constant thickness, multiple of the shell thickness, provides a uniform and rapid convergence of approximate solutions, allowing one to frame solutions with a small error. Multigrid discrete models have 10<sup>3</sup>…10<sup>6</sup> times less unknown MFE than the basic ones. The implementation of the MFE for multigrid models requires 10<sup>4</sup>…10<sup>7</sup> times less computer storage space than for the reference models, which allows one using the proposed method to calculate some large shells. An example of calculating a multilayer cylindrical local loading shell of irregular shape was given. In the calculation, three-grid shell - type FE, developed on the basis of the reference models having from 2 million to 3.7 billion of the nodal MFE unknowns were used. To study the approximate solution convergence and error, a well-known numerical method was used.
Предложен эффективный численный метод расчета линейно-упругих многослойных цилиндрических оболо- чек при статическом нагружении с применением многослойных криволинейных лагранжевых многосеточных конечных элементов (МнКЭ) оболочечного типа. Такие оболочки широко используются в ракетно-космической и авиационной технике. МнКЭ проектируются в локальных декартовых системах координат на основе мелких (базовых) разбиений оболочек, которые учитывают их неоднородную структуру, сложную форму, сложное нагружение и закрепление. Напряженное деформированное состояние в МнКЭ описывается уравнениями трехмерной задачи теории упругости без использования дополнительных кинематических и статических гипотез, что позволяет применять МнКЭ для расчета многослойных оболочек различной толщины. Показана процедура построения в локальных криволинейных системах координат полиномов Лагранжа, которые приме- няются при проектировании оболочечных МнКЭ. Перемещения в МнКЭ аппроксимируются степенными и лагранжевыми полиномами различных порядков. При построении n -сеточного конечного элемента (КЭ), n ≥ 2, используют n вложенных сеток. Мелкая сетка порождена базовым разбиением МнКЭ, остальные n - 1 (крупные) сетки применяются для понижения его размерности. В предлагаемом методе узлы крупных сеток МнКЭ расположены на общих границах разномодульных слоев оболочки. Закон измельчения дискретных моде- лей, в которых используются МнКЭ с постоянной толщиной, кратной толщине оболочки, порождает равно- мерную и быструю сходимость приближенных решений, что дает возможность строить решения с малой погрешностью. Многосеточные дискретные модели имеют в 10<sup>3</sup>-10<sup>6</sup> раз меньше узловых неизвестных, чем базовые. Реализация метода конечных элементов (МКЭ) для многосеточных моделей требует в 10<sup>4</sup>-10<sup>7</sup> раз меньше объема памяти ЭВМ, чем для базовых, что позволяет использовать предложенный метод для расчета оболочек больших размеров. В приведенном расчете многослойной цилиндрической оболочки сложной формы, имеющей локальное нагружение, используются оболочечные трехсеточные КЭ, построенные на базовых моде- лях, которые имеют от 2 миллионов до 3,7 миллиарда неизвестных МКЭ. Для анализа сходимости приближен- ных решений используется известный численный метод.

РИНЦ

Держатели документа:
Institute of Computational Modeling
Novosibirsk State Technical University

Доп.точки доступа:
Matveev, A.D.; Матвеев А.Д.; Grishanov, A.N.; Гришанов А.Н.