Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 6

    Расчет композитных цилиндрических оболочек с применением многосеточных элементов
[Текст] : статья / А. Д. Матвеев, А. Н. Гришанов // Решетневские чтения. - 2015. - Т. 2, № 19. - С. 149-152 . - ISSN 1990-7702
   Перевод заглавия: Calculating composite cylindrical shells using multigrid elements
УДК

Аннотация: Предложен расчет упругих композитных цилиндрических оболочек (которые широко используются в ракетно-космической технике) с применением криволинейных многосеточных элементов. Предлагаемые элементы учитывают неоднородную структуру оболочек и порождают дискретные модели малой размерности.
Calculatingtheelasticcomposite cylindrical shellswith curvilinearmultigridelements is proposed. The proposed elements take into account the heterogeneous shell structure and generate a discrete model of small dimension.

РИНЦ,
Полный текст

Держатели документа:
Институт вычислительного моделирования СО РАН
Новосибирский государственный технический университет

Доп.точки доступа:
Гришанов, А.Н.; Grishanov A.N.; Matveev A.D.
539.3
М 54

    Метод многосеточных конечных элементов в расчетах трехмерных однородных и композитных тел
[Текст] : научное издание / Александр Данилович Матвеев // Ученые записки Казанского университета. Серия: Физико-математические науки. - 2016. - Т. 158, № 4. - С. 530-543 . - ISSN 2541-7746
   Перевод заглавия: Multigrid Finite Element Method in Calculation of 3D Homogeneous and Composite Solids
УДК

Аннотация: В работе предложен метод многосеточных конечных элементов для расчета упругих трехмерных однородных и композитных тел при статическом нагружении. Предлагаемый метод построен на основе алгоритмов метода конечных элементов с применением однородных и композитных трехмерных многосеточных конечных элементов (МнКЭ). Рассмотрены процедуры построения МнКЭ. имеющего форму прямоугольного параллелепипеда и сложную форму. Достоинства МнКЭ состоят в том, что они учитывают по правилам микроподхода неоднородную и микронеоднородную структуры тел, описывают трехмерное напряженно-деформированное состояние (без упрощающих гипотез) в однородных и композитных телах, порождают дискретные модели малой размерности и позволяют получать численные решения с малой погрешностью.
In the present paper, a method of multigrid finite elements to calculate elastic three-dimensional homogeneous and composite solids under static loading has been suggested. The method has been developed based on the finite element method algorithms using homogeneous and composite three-dimensional multigrid finite elements (MFE). The procedures for construction of MFE of both rectangular parallelepiped and complex shapes have been shown. The advantages of MFE are that they take into account, following the rules of the microapproach, heterogeneous and microhomogeneous structures of the bodies, describe the three-dimensional stress-strain state (without any simplifying hypotheses) in homogeneous and composite solids, as well as generate small dimensional discrete models and numerical solutions with a high accuracy.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Матвеев, Александр Данилович
539.3
М 54

    Метод многосеточных конечных элементов в расчетах композитных пластин и балок
[Текст] : научное издание / А. Д. Матвеев // Вестник Красноярского государственного аграрного университета. - 2016. - № 12. - С. 93-100 . - ISSN 1819-4036
УДК

Аннотация: Для расчета напряженного состояния упру-гих трехмерных композитных пластин и балок при статическом нагружении предложен ме-тод многосеточных конечных элементов, ко-торый реализуется на основе алгоритмов метода конечных элементов (МКЭ) с примене-нием трехмерных многосеточных конечных элементов (МнКЭ), имеющих неоднородную и микронеоднородную структуру. Отличие МнКЭ от существующих конечных элементов (КЭ) состоит в следующем. При построении -сеточного КЭ используются вложенных сеток. Мелкая сетка порождает разбиение, которое учитывает неоднородную структуру и форму МнКЭ, остальные крупные сет-ки применяются для понижения размерности МнКЭ, причем с увеличением размерность МнКЭ уменьшается. Особенность и достоин-ство МнКЭ состоят в том, что при построе-нии МнКЭ используются сколь угодно мелкие базовые разбиения композитных пластин, ба-лок, состоящих из односеточных КЭ 1-го по-рядка, т.е. по сути используется микроподход в конечноэлементной форме. Такие мелкие разбиения позволяют учитывать в МнКЭ, т.е. в базовых дискретных моделях композитных пластин, балок, сложную неоднородную, мик-ронеоднородную структуру и форму, сложный характер нагружения и закрепления и описы-вать сколь угодно точно напряженное дефор-мированное состояние уравнениями трехмер-ной теории упругости без введения дополни-тельных упрощающих гипотез. Краткая суть МнКЭ состоит в следующем. На базовом раз-биении (на мелкой сетке) сеточного конеч-ного элемента, определяем полную потенциальную энергию как функцию мно-гих переменных, которыми являются узловые перемещения мелкой сетки. На остальных крупных сетках (вложенных в мелкую сетку) строим по МКЭ функции перемещений, которые используем для понижения размерно-сти функции что позволяет проектиро-вать МнКЭ малой размерности. Изложены процедуры построения МнКЭ формы прямо-угольного параллелепипеда, пластинчатого и балочного типов. Достоинства МнКЭ состо-ят в том, что они порождают дискретные модели малой размерности и сеточные реше-ния c малой погрешностью. Приведен пример расчета многослойной пластины с примене-нием трехмерных 3- сеточных КЭ.
To calculate the stress state of elastic three-dimensional plates and beams under static loading a multigrid finite element method implemented on the basis of algorithms of finite element method (FEM), using three-dimensional multigrid finite ele-ments (MFE) of heterogeneous structure has been provided. The differences of MFE from currently available finite elements (FE) are as follows. When building - grid FE of nested grids is used. The fine grid generates a partition taking into ac-count inhomogeneous structure and shape of MFE, the other large grids are applied to reduce MFE dimensionality, with MFE dimension decreas-ing when is increasing. The peculiarities and advantages of MFE are to develop MFE, arbitrarily small basic partitions of composite plates and beams containing the 1st order single-grid FE can be used, i.e. in fact, the finite element micro ap-proach is applied. These partitions allow one to take into account in MFE the complex heterogene-ous and microscopically inhomogeneous structure, shape and complex loading and fixing nature and to describe the stress and stain state by the equa-tions of three-dimensional elastic theory without any additional simplifying hypotheses. The essence of MFE is as follows. At a basic partition (on the fine grid) of - grid FE, the total potential energy as a function of many variables depend-ing on the fine grid nodal displacements has been determined. On the other coarse grids (en-closed in the fine one), the displacement functions used to reduce the dimension of the function that allows one developing MFE of small dimension are found by FEM. The procedures of developing MFE of rectangular parallelepiped of plate and beam types are given. The advantages of MFE are: they produce small dimensional discrete models and high accuracy numerical solutions. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model are given, with that having 623 millions of FEM nodal unknowns.

РИНЦ

Держатели документа:
Института вычислительного моделирования СО РАН

Доп.точки доступа:
Матвеев, А.Д.; Matveev A.D.
519.6
E27

    Efficient method of calculating layered conical shells with lagrange multigrid elements use
[Text] : статья / G. I. Rastorguev, A. N. Grishanov, A. D. Matveev // Сибирский журнал науки и технологий. - 2018. - Т. 19, № 3. - P423-431, DOI 10.31772/2587-6066-2018-19-3-423-431 . - ISSN 2587-6066
   Перевод заглавия: Эффективный метод расчета слоистых конических оболочек с применением лагранжевых многосеточных элементов
УДК

Аннотация: The increased requirements for strength calculations of space-rocket and aviation technology designs cause the need for the development and improvement of approximate solutions for elasticity theory tasks with small error algo- rithms. The article considers the numerical method of calculating elastic layered conical shells (LCS) of various thickness under static loading which are widely used in space-rocket technology. The suggested method uses three-dimensional curvilinear Lagrange multigrid finite elements (MGFE). A system of nested grids is used for MGFE constructing. The fine grid is generated by the basic partition that takes into account MGFE heterogeneous structure. The basic partition dimensionality is reduced with the help of large grids which leads to the system of linear algebraic equations of the small dimension finite elements method. Three-dimensional elasticity theory equations use allows to apply MGFE for calculating LCS of any thickness. Displacements in MGFE are approximated by Lagrange polynomials which, in con- trast to power polynomials, gives the opportunity to design big size three-dimensional thin shell elements. Lagrange polynomials nodes coincide in shell thickness with the nodes of MGFE large grids which lie on the shared borders of multi-module layers. The efficiency of the presented method is that the suggested MGFE generate small dimension discrete models that require 10<sup>3</sup>-10<sup>7</sup> times less electronic computing machine (ECM) memory than basic models. The suggested law of dis- crete models grinding generates uniform and fast convergence of numerical solutions which allows to make solutions with the specified (small) error. Examples of LCS calculating (whole ones as well as with holes) under axisymmetric and local loading are given. Comparative analysis of solutions obtained with the help of MGFE, single-grid finite elements and the program com- plex ANSYS has been conducted.
Повышенные требования к прочностным расчетам конструкций ракетно-космической и авиационной техники вызывают необходимость разработки и совершенствования алгоритмов приближенных решений за- дач теории упругости с малой погрешностью. Рассматривается численный метод расчета упругих слоистых конических оболочек (СКО) различной толщины при статическом нагружении, которые широко применяются в ракетно-космической технике. В предлагаемом методе используются трехмерные криволинейные лагранжевые многосеточные конечные элементы (МнКЭ). При построении МнКЭ используется система вложенных сеток. Мелкая сетка порождена базовым разбиением, которое учитывает неоднородную структуру МнКЭ. С помощью крупных сеток пони- жается размерность базового разбиения, что приводит к системе линейных алгебраических уравнений мето- да конечных элементов малой размерности. Использование уравнений трехмерной теории упругости позволя- ет применять МнКЭ для расчета СКО любой толщины. Перемещения в МнКЭ аппроксимируются полиномами Лагранжа, что в отличие от степенных полиномов дает возможность проектировать трехмерные тонкие оболочечные элементы больших размеров. Узлы полиномов Лагранжа по толщине оболочки совпадают с узла- ми крупных сеток МнКЭ, которые лежат на общих границах разномодульных слоев. Эффективность изложенного метода заключается в том, что предлагаемые МнКЭ порождают дискрет- ные модели малой размерности, для которых требуется в 10<sup>3</sup>-10<sup>7</sup> раз меньше объема памяти ЭВМ, чем для базовых моделей. Предложенный закон измельчения дискретных моделей порождает равномерную и быструю сходимость численных решений, что позволяет строить решения с заданной (малой) погрешностью. Приведены примеры расчетов СКО (цельных и с отверстиями) при осесимметричном и локальном нагру- жениях. Выполнен сравнительный анализ решений, полученных с помощью МнКЭ, односеточных конечных элементов и программного комплекса ANSYS

РИНЦ

Держатели документа:
Institute of Computational Modeling SB RAS
Novosibirsk State Technical University

Доп.точки доступа:
Rastorguev, G. I.; Расторгуев Г.И.; Grishanov, A. N.; Гришанов А.Н.; Matveev, A. D.; Матвеев А.Д.
539.3
М 54

    Метод образующих конечных элементов
[Текст] : статья / А. Д. Матвеев // Вестник Красноярского государственного аграрного университета. - 2018. - № 6. - С. 141-154 . - ISSN 1819-4036
   Перевод заглавия: The method of forming finite elements
УДК

Аннотация: Расчеты по методу конечных элементов (МКЭ) трехмерного напряженного состояния композитных и однородных оболочек вращения, цилиндрических оболофективно используются многосеточные конечные элементы (МнКЭ). При построении композитного МнКЭ используется система вложенных сеток. Мелкая сетка порождена базовым разбиением МнКЭ, которое сколь угодно точно учитывает его неоднородную структуру и форму (без увеличения размерности МнКЭ). На крупных сетках по МКЭ определяются функции перемещений, которые применяются для понижения размерности базового разбиения, что позволяет проектировать МнКЭ малой размерности. Функции перемещений и напряженное состояние в МнКЭ, которое описывается уравнениями трехмерной теории упругости, представляются в локальных декартовых системах координат. В этом случае МнКЭ оболочечного типа не имеют перемещений как жесткого целого. В данной работе предложен метод образующих конечных элементов (КЭ) для построения упругих трехмерных композитных (однородных) МнКЭ двух типов. Криволинейные МнКЭ 1-го типа получаются путем поворота заданного плоского образующего КЭ вокруг заданной оси на заданный угол, МнКЭ 2-го типа – путем параллельного перемещения образующего КЭ в заданном направлении на заданное расстояние. Такой подход позволяет проектировать МнКЭ, один характерный размер которых значительно больше (меньше) других. МнКЭ 1-го и 2-го типа применяются при расчете композитных оболочек вращения, колец, круглых пластин, дисков, валов, цилиндрических оболочек с переменным радиусом кривизны, пластин и балок сложной формы. Предложены МнКЭ 1-го и 2-го типа для расчета трехмерного напряженного состояния основных силовых элементов крыльев и фюзеляжей самолетов, корпусов кораблей, подводных лодок и ракет, гофрированных пластин и оболочек. Рассмотрена процедура построения криволинейных МнКЭ с помощью суперэлементов с внутренними узлами, применение которых приводит к уменьшению погрешности решений. Предлагаемые МнКЭ порождают дискретные модели малой размерности. Предложены верхние оценки погрешностей приближенных решений.?
Calculations by Finite Element Method (FEM) of the three-dimensional strained state of large-sized structures (wings and fuselages of aircraft, marine hulls, submarines and rockets) reduce to the construction of discrete models of very high dimension. To reduce the dimensionality of discrete models, three-dimensional multigrid finite elements (MgFE) are used. When constructing a composite MgFE, a nested grid system is used. A fine grid is generated by a basic parti- tioning of the MgFE that arbitrarily closely takes into account its heterogeneous structure and shape (without increasing the dimension of the MgFE). On large grids the functions of movements applied to the decrease of dimension of basic splitting allowing to project MgFE of small dimension are de- termined by FEM. The MgFE displacement functions and stress state described by the equations of the three- dimensional elasticity problem are represented in local Carte- sian coordinate systems. In this case MgFE of cover type has no movements as rigid whole. In the study the method of the forming final elements (FE) for creation of elastic three- dimensional composite (uniform) MgFE of two types is of- fered. Curvilinear type 1 MgFE are obtained by turning a giv-en plane forming FE around a given axis at a given angle, type 2 MgFE - by parallel moving forming FE in a given direc- tion for a given distance. This approach allows projecting the design of MgFE which size is significantly larger (smaller) than others'. MgFE of the 1st and 2nd type are applied at calculation of composite covers of rotation, rings, round plates, disks, shaft, cylindrical covers with a variable radius of curvature, plates and beams of difficult form. The 1st and 2nd type MgFE are proposed for calculating three-dimensional stress state of the main power elements of the wings and fuselage of aircraft, ship hulls, submarines and missiles, cor- rugated plates and shells. The procedure of constructing the first and second type MgFE used to calculate the three- dimensional stress state of the primary structural members of the wings and aircraft fuselages, marine hulls, submarines and missiles (stringers, frames, spars, bulkheads, floor, deck and shells of various shapes) is considered. Proposed MgFE generate small dimensional discrete models. Upper errors of approximate soiutions are proposed.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Матвеев, А.Д.; Matveev A.D.
539.3
М 54

    МЕТОД МНОГОСЕТОЧНЫХ КОНЕЧНЫХ ЭЛЕМЕНТОВ В РАСЧЕТАХ КОМПОЗИТНЫХ БАЛОК СЛОЖНОЙ ФОРМЫ
[Текст] : статья / А. Д. Матвеев // Решетневские чтения. - 2018. - Т. 1, № 22. - С. 568-569 . - ISSN 1990-7702
   Перевод заглавия: MULTIGRID FINITE ELEMENT METHOD IN THE CALCULATIONS OF COMPOSITE BEAMS OF IRREGULAR SHAPE
УДК

Аннотация: Для анализа трехмерного напряженного состояния упругих композитных (однородных) балок сложной формы с различными коэффициентами наполнения при статическом нагружении предложен метод многосеточных конечных элементов. Такие балки широко применяются в ракетно-космической технике. Предлагаемый метод базируется на алгоритмах метода конечных элементов с применением однородных и композитных многосеточных конечных элементов
To calculate the stress and strain state of three-dimensional elastic composite beams of heterogeneous structure, irregular shape and static loading, a method of multigrid finite elements is provided, when implemented on the basis of algorithms of finite element method, using three-dimensional homogeneous and composite multigrid finite elements. Composites beams of irregular shape are widely used in space-rocket technology.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Матвеев, А.Д.; Matveev A.D.