Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 2
539.3
M94

    Multigrid finite elements in the calculations of multilayer cylindrical shells
: статья / A. D. Matveev, A. N. Grishanov // Сибирский журнал науки и технологий. - 2018. - Т. 19, № 1. - P27-36 . - ISSN 2587-6066
   Перевод заглавия: Многосеточные конечные элементы в расчетах многослойных цилиндрических оболочек
УДК

Аннотация: An effective numerical method for calculating linearly elastic multilayer cylindrical shells under static loading implemented on the basis of Finite Element Method (FEM) procedures using the multilayer curved Lagrangian multi- grid finite elements (MFE) of the shell type was proposed. Such shells are widely used in rocket-space and aircraft engineering. MFE are developed in local Cartesian coordinate systems based on small (basic) shell partitions that take into account their heterogeneous structure, irregular shape, combined loading and fixing. The stress strained state (SSS) in the MFE was described by the equations of the three-dimensional elasticity problem without using the addi- tional kinematical and static hypotheses, which allow one to use MFE for the shells of various thicknesses to be calcu- lated. The procedure of constructing the Langrage polynomials in local curvilinear coordinate systems used to develop the shell MFE is presented. The displacements in the MFE were approximated by the power and Lagrange polynomials of different orders. When constructing a n -grid finite element (FE), n ≥ 2, n-nested grids were used. The fine grid was generated by the basic partition of the MFE; the other (coarse) grids were used to reduce its dimension. According to the method, the nodes of the coarse MFE grids are located on the common boundaries of the different modular layers of the shell. The proposed law of the expansion in the number of discrete models using MFE with a constant thickness, multiple of the shell thickness, provides a uniform and rapid convergence of approximate solutions, allowing one to frame solutions with a small error. Multigrid discrete models have 10<sup>3</sup>…10<sup>6</sup> times less unknown MFE than the basic ones. The implementation of the MFE for multigrid models requires 10<sup>4</sup>…10<sup>7</sup> times less computer storage space than for the reference models, which allows one using the proposed method to calculate some large shells. An example of calculating a multilayer cylindrical local loading shell of irregular shape was given. In the calculation, three-grid shell - type FE, developed on the basis of the reference models having from 2 million to 3.7 billion of the nodal MFE unknowns were used. To study the approximate solution convergence and error, a well-known numerical method was used.
Предложен эффективный численный метод расчета линейно-упругих многослойных цилиндрических оболо- чек при статическом нагружении с применением многослойных криволинейных лагранжевых многосеточных конечных элементов (МнКЭ) оболочечного типа. Такие оболочки широко используются в ракетно-космической и авиационной технике. МнКЭ проектируются в локальных декартовых системах координат на основе мелких (базовых) разбиений оболочек, которые учитывают их неоднородную структуру, сложную форму, сложное нагружение и закрепление. Напряженное деформированное состояние в МнКЭ описывается уравнениями трехмерной задачи теории упругости без использования дополнительных кинематических и статических гипотез, что позволяет применять МнКЭ для расчета многослойных оболочек различной толщины. Показана процедура построения в локальных криволинейных системах координат полиномов Лагранжа, которые приме- няются при проектировании оболочечных МнКЭ. Перемещения в МнКЭ аппроксимируются степенными и лагранжевыми полиномами различных порядков. При построении n -сеточного конечного элемента (КЭ), n ≥ 2, используют n вложенных сеток. Мелкая сетка порождена базовым разбиением МнКЭ, остальные n - 1 (крупные) сетки применяются для понижения его размерности. В предлагаемом методе узлы крупных сеток МнКЭ расположены на общих границах разномодульных слоев оболочки. Закон измельчения дискретных моде- лей, в которых используются МнКЭ с постоянной толщиной, кратной толщине оболочки, порождает равно- мерную и быструю сходимость приближенных решений, что дает возможность строить решения с малой погрешностью. Многосеточные дискретные модели имеют в 10<sup>3</sup>-10<sup>6</sup> раз меньше узловых неизвестных, чем базовые. Реализация метода конечных элементов (МКЭ) для многосеточных моделей требует в 10<sup>4</sup>-10<sup>7</sup> раз меньше объема памяти ЭВМ, чем для базовых, что позволяет использовать предложенный метод для расчета оболочек больших размеров. В приведенном расчете многослойной цилиндрической оболочки сложной формы, имеющей локальное нагружение, используются оболочечные трехсеточные КЭ, построенные на базовых моде- лях, которые имеют от 2 миллионов до 3,7 миллиарда неизвестных МКЭ. Для анализа сходимости приближен- ных решений используется известный численный метод.

РИНЦ

Держатели документа:
Institute of Computational Modeling
Novosibirsk State Technical University

Доп.точки доступа:
Matveev, A.D.; Матвеев А.Д.; Grishanov, A.N.; Гришанов А.Н.
519.6
E27

    Efficient method of calculating layered conical shells with lagrange multigrid elements use
[Text] : статья / G. I. Rastorguev, A. N. Grishanov, A. D. Matveev // Сибирский журнал науки и технологий. - 2018. - Т. 19, № 3. - P423-431, DOI 10.31772/2587-6066-2018-19-3-423-431 . - ISSN 2587-6066
   Перевод заглавия: Эффективный метод расчета слоистых конических оболочек с применением лагранжевых многосеточных элементов
УДК

Аннотация: The increased requirements for strength calculations of space-rocket and aviation technology designs cause the need for the development and improvement of approximate solutions for elasticity theory tasks with small error algo- rithms. The article considers the numerical method of calculating elastic layered conical shells (LCS) of various thickness under static loading which are widely used in space-rocket technology. The suggested method uses three-dimensional curvilinear Lagrange multigrid finite elements (MGFE). A system of nested grids is used for MGFE constructing. The fine grid is generated by the basic partition that takes into account MGFE heterogeneous structure. The basic partition dimensionality is reduced with the help of large grids which leads to the system of linear algebraic equations of the small dimension finite elements method. Three-dimensional elasticity theory equations use allows to apply MGFE for calculating LCS of any thickness. Displacements in MGFE are approximated by Lagrange polynomials which, in con- trast to power polynomials, gives the opportunity to design big size three-dimensional thin shell elements. Lagrange polynomials nodes coincide in shell thickness with the nodes of MGFE large grids which lie on the shared borders of multi-module layers. The efficiency of the presented method is that the suggested MGFE generate small dimension discrete models that require 10<sup>3</sup>-10<sup>7</sup> times less electronic computing machine (ECM) memory than basic models. The suggested law of dis- crete models grinding generates uniform and fast convergence of numerical solutions which allows to make solutions with the specified (small) error. Examples of LCS calculating (whole ones as well as with holes) under axisymmetric and local loading are given. Comparative analysis of solutions obtained with the help of MGFE, single-grid finite elements and the program com- plex ANSYS has been conducted.
Повышенные требования к прочностным расчетам конструкций ракетно-космической и авиационной техники вызывают необходимость разработки и совершенствования алгоритмов приближенных решений за- дач теории упругости с малой погрешностью. Рассматривается численный метод расчета упругих слоистых конических оболочек (СКО) различной толщины при статическом нагружении, которые широко применяются в ракетно-космической технике. В предлагаемом методе используются трехмерные криволинейные лагранжевые многосеточные конечные элементы (МнКЭ). При построении МнКЭ используется система вложенных сеток. Мелкая сетка порождена базовым разбиением, которое учитывает неоднородную структуру МнКЭ. С помощью крупных сеток пони- жается размерность базового разбиения, что приводит к системе линейных алгебраических уравнений мето- да конечных элементов малой размерности. Использование уравнений трехмерной теории упругости позволя- ет применять МнКЭ для расчета СКО любой толщины. Перемещения в МнКЭ аппроксимируются полиномами Лагранжа, что в отличие от степенных полиномов дает возможность проектировать трехмерные тонкие оболочечные элементы больших размеров. Узлы полиномов Лагранжа по толщине оболочки совпадают с узла- ми крупных сеток МнКЭ, которые лежат на общих границах разномодульных слоев. Эффективность изложенного метода заключается в том, что предлагаемые МнКЭ порождают дискрет- ные модели малой размерности, для которых требуется в 10<sup>3</sup>-10<sup>7</sup> раз меньше объема памяти ЭВМ, чем для базовых моделей. Предложенный закон измельчения дискретных моделей порождает равномерную и быструю сходимость численных решений, что позволяет строить решения с заданной (малой) погрешностью. Приведены примеры расчетов СКО (цельных и с отверстиями) при осесимметричном и локальном нагру- жениях. Выполнен сравнительный анализ решений, полученных с помощью МнКЭ, односеточных конечных элементов и программного комплекса ANSYS

РИНЦ

Держатели документа:
Institute of Computational Modeling SB RAS
Novosibirsk State Technical University

Доп.точки доступа:
Rastorguev, G. I.; Расторгуев Г.И.; Grishanov, A. N.; Гришанов А.Н.; Matveev, A. D.; Матвеев А.Д.