Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 2
004.942
М744

    МОДЕЛЬ СКОРОСТНОГО КОНВЕКТИВНОГО НАГРЕВА МЕТАЛЛА ДЛЯ ИСПОЛЬЗОВАНИЯ В АЛГОРИТМАХ АСУТП
[Текст] : статья / В. М. Белолипецкий, Т. В. Пискажова, А. А. Портянкин // Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева. - 2016. - Т. 17, № 3. - С. 554-561 . - ISSN 1816-9724
   Перевод заглавия: THE MODEL OF METAL SPEED CONVECTION HEATING FOR USING IN ALGORITHMS OF THE CONTROL SYSTEM
УДК

Аннотация: Технологические процессы обработки металлов в космическом машиностроении содержат такие обязательные операции, как подготовка исходного материала, его нагрев, прокатка и отделка. Нагрев металла перед прокаткой повышает его пластичность и улучшает физико-механические свойства. Повышенные требования применяются при обработке титановых и алюминиевых сплавов к температурным режимам первоначальных, промежуточных подогревов, отжигам, искусственному старению. Строгое соблюдение этих требований обеспечивает стойкость металла к высоким и низким температурам, вибрационным нагрузкам и воздействию радиации. Одним из актуальных направлений совершенствования технологического режима нагрева металла является внедрение современных АСУТП-печей, что, в свою очередь, требует энергосберегающих и обеспечивающих заданные требования к нагреву алгоритмов управления. Такие алгоритмы для правильного прогнозирования должны использовать математические модели процессов. Целью работы является создание модели для использования в алгоритмах АСУТП, которая позволит управлять скоростным конвективным нагревом металлических слитков. Для тестирования и определения границ применения расчеты по разработанной модели в обыкновенных дифференциальных уравнениях сравнивались с расчетами по эталонной модели, основанной на нестационарном уравнении теплопроводности. Рассматривался нагрев материалов с высокой и низкой теплопроводностью. Использовались аналитические и численные методы решения обыкновенных дифференциальных уравнений; аналитическое и конечно-разностное решение третьей краевой задачи для уравнения теплопроводности. Предложена упрощенная модель нагрева материалов в печи скоростного конвективного нагрева, пост-роенная на обыкновенных дифференциальных уравнениях и позволяющая при работе в составе АСУТП рассчитывать скорости и режимы нагревов, оценивать равномерности нагревов слитков для предоставления этих данных оператору или для автоматического принятия решения об изменении подводимой мощности или изменении времени нагрева.
A technological process of metal processing in space machinery contains such mandatory operation as the preparation of the raw material, its heating, rolling and finishing. Heating metal before rolling increases its ductility and improves physical and mechanical properties. Increased requirements apply to processing of titanium and aluminum alloys to temperature conditions of the initial, intermediate heating, annealing and artificial aging. Strict compliance with these requirements provides metal resistant to high and low temperatures, vibration loads and effects of radiation. One of the important ways to improve the process of heating metal mode is to introduce modern process control system of furnaces, which in turn requires energy-efficient and provides the specified requirements for the heating control algorithms. To correctly predict such algorithms it is necessary to use mathematical models of processes. The purpose of our work is to create a model for using in algorithms of process control system, which enables you to control speed convective heating of metal ingots. For testing and determination of the boundaries of the application of calculations on the model developed in ordinary differential equations were compared by us with the calculations for a reference model based on unsteady heat conduction equation. In this work materials with high heat and low thermal conductivity were examined. We use analytical and numerical methods for solving ordinary differential equations; analytical and finite difference solution of the third boundary value problem for the heat equation. A simplified model of heating materials in the furnace high-speed convection heating, built on ordinary differential equations and allowing at work as part of process control system to calculate speed and the heating mode, to assess of uniformity of heating of ingots to provide these data to the operator or to automatic decision to change the power input, or change the time heating, is offered.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН
Сибирский федеральный университет

Доп.точки доступа:
Пискажова, Т.В.; Piskazhova T.V.; Портянкин, А.А.; Portyankin А.А.; Belolipetskii V.M.
65.011.56
Ч-67

    Численная модель поведения гарнисажа в алюминиевом электролизере
[Текст] : статья / Виктор Михайлович Белолипецкий, Татьяна Валериевна Пискажова, Артем Александрович Портянкин // Вестник Иркутского государственного технического университета. - 2017. - Т. 21, № 8. - С. 151-166, DOI 10.21285/1814-3520-2017-8-151-166 . - ISSN 1814-3520
   Перевод заглавия: Computational model of ledge behavior in aluminum reduction cell
УДК

Аннотация: ЦЕЛЬЮ данной работы является создание автоматической научно- исследовательской системы, снижающей энергопотребление ванн, а также позволяющей анализировать поведение алюминиевого электролизера при подаче управляющих воздействий. Исследуется часть математической модели теплообмена в алюминиевом электролизере, рассматривающая теплопередачу через бортовую футеровку и процессы плавления - кристаллизации гарнисажа, имеющегося на внутренней поверхности стенки ванны и вносящего нелинейные аспекты в управление этим металлургическим аппаратом. Представлена новая численная одномерная модель поведения гарнисажа, позволяющая рассчитывать динамическое изменение температур по сечению борта электролизера и положение фронта кристаллизации. МЕТОДЫ. Модель использует динамическое одномерное уравнение теплопроводности, граничные условия 1 и 3 рода, условие Стефана и метод явного выделения фронта кристаллизации. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. С использованием различных моделей разработанного программного обеспечения проведено сравнение расчетов динамики температур бортовой футеровки и толщины гарнисажа. Показано, что разработанная модель лучше определяет характеристики переходных процессов теплообмена при изменении рабочей температуры расплава и температуры его кристаллизации и может быть использована при разработке алгоритмов управления заданным напряжением на алюминиевых электролизерах. ВЫВОДЫ. Проведено сравнение моделей и представлены результаты расчетов, которые демонстрируют преимущества новой одномерной динамической модели теплопередачи через бортовую футеровку электролизера с учетом фазового перехода. Данная модель может быть использована в составе АСУТП получения алюминия.
The PURPOSE of this work is to create an automated research system that allows to reduce energy consumption of electrolyte pots as well as to analyze the behavior of an aluminum electrolytic cell when applying control actions. The article studies a part of the mathematical model of heat transfer in the aluminum electrolytic cell dealing with the heat transfer through the side lining and melting processes involving the crystallization of skull covering the internal walls of the pot and introducing nonlinear aspects into the control of this metallurgical unit. A new numerical one-dimensional model of skull behavior is presented. It allows to calculate the dynamic variation of temperatures along the cross-section of the electrolytic cell side and the position of the crystallization front. METHODS. The model uses a dynamic one-dimensional heat equation, boundary conditions of the 1st and 3rd kind, Stefan's condition, and the method of explicit identification of the crystallization front. RESULTS AND THEIR DISCUSSION. Using different models of the developed software the calculations of the side lining temperature dynamics and skull thickness have been compared. It is shown that the developed model better determines the characteristics of heat transfer transient processes under the change in the working temperature of the melt and its crystallization temperature and can be used to develop control algorithms for the set voltage on aluminum electrolyzers. CONCLUSIONS. The models have been compared and the calculation results have been presented. They demonstrate the advantages of the new one-dimensional dynamic model of heat transfer through the side lining of the electrolytic cell taking into account the phase transition. This model can be used as a part of the automated system of production technology control.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН
Сибирский федеральный университет, Институт цветных металлов и материаловедения

Доп.точки доступа:
Белолипецкий, Виктор Михайлович; Belolipetskii Viktor M.; Пискажова, Татьяна Валериевна; Piskazhova Tatiana V.; Портянкин, Артем Александрович; Portyankin Artem A.