Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 87
   В3
   G65

    Recovering data gaps through neural network methods
[Text] : статья / A.N. Gorban, A. Rossiev, N. Makarenko, Y. Kuandykov, V. Dergachev // International Journal of Geomagnetism and Aeronomy. - 2002. - Vol. 3, № 2. - p. 191–197

Аннотация: A new method is presented to recover the lost data in geophysical time series. It is clear that gaps in data are a substantial problem in obtaining correct outcomes about phenomenon in time series processing. Moreover, using the data with irregular coarse steps results in the loss of prime information during analysis. We suggest an approach to solving these problems, that is based on the idea of modeling the data with the help of small-dimension manifolds, and it is implemented with the help of a neural network. We use this approach on real data and show its proper use for analyzing time series of cosmogenic isotopes. In addition, multifractal analysis was applied to the recovered 14C concentration in the Earth's atmosphere.

http://icm.krasn.ru/refextra.php?id=2790,
http://ijga.agu.org/v03/gai01384/gai01384.pdf,
Полный текст

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Rossiev, A.; Россиев, Алексей Анатольевич; Makarenko, N.; Макаренко Н.; Kuandykov, Y.; Dergachev, V.; Горбань, Александр Николаевич

    The numerical modeling of a cesium cyclein the upper atmosphere by an l-stable method of second-order accuracy
[Текст] : статья / A.E. Novikov, E.A. Novikov // Вестник СибГАУ. - 2009. - Вып. 5(26). - С. 17-20

Кл.слова (ненормированные):
accuracy control -- L-stable method -- stiff problem -- cesium cycle -- chemical kinetics

Аннотация: An algorithm of right-hand side and Jacobian formation of differential equations of chemical kinetics is described. Numerical simulation of the cesium cycle in the upper atmosphere is conducted by means of the L-stable method of the second order of accuracy with the control accuracy. The results of the computation are presented.

Полный текст на сайте журнала


Доп.точки доступа:
Novikov, E.A.; Новиков, Евгений Александрович

    Probing the blow-off criteria of hydrogen-rich 'super-Earths'
/ H. Lammer [et al.] // Mon. Not. Roy. Astron. Soc. - 2013. - Vol. 430, Is. 2. - P1247-1256, DOI 10.1093/mnras/sts705. - Cited References: 85. - NVE, KGK, MLK and HL acknowledge the support by the FWF NFN project S116 'Pathways to Habitability: From Disks to Active Stars, Planets and Life', and the related FWF NFN subprojects, S116 606-N16 'Magnetospheric Electrodynamics of Exoplanets' and S116607-N16 'Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions'. KGK, HL and PO thank also the Helmholtz Alliance project 'Planetary Evolution and Life'. ML and PO acknowledge support from the FWF project P22950-N16. NVE acknowledges support by the RFBR grant No 12-05-00152-a. The authors also acknowledge support from the EU FP7 project IMPEx (No. 262863) and the EUROPLANET-RI projects, JRA3/EMDAF and the Na2 science working group WG5. The authors thank the International Space Science Institute (ISSI) in Bern, and the ISSI team 'Characterizing stellar- and exoplanetary environments'. Finally, we thank an anonymous referee for interesting suggestions and recommendations which helped to improve the article. . - 10. - ISSN 0035-8711
РУБ Astronomy & Astrophysics

Аннотация: The discovery of transiting 'super-Earths' with inflated radii and known masses, such as Kepler-11b-f, GJ 1214b and 55 Cnc e, indicates that these exoplanets did not lose their nebula-captured hydrogen-rich, degassed or impact-delivered protoatmospheres by atmospheric escape processes. Because hydrodynamic blow-off of atmospheric hydrogen atoms is the most efficient atmospheric escape process we apply a time-dependent numerical algorithm which is able to solve the system of 1D fluid equations for mass, momentum and energy conservation to investigate the criteria under which 'super-Earths' with hydrogen-dominated upper atmospheres can experience hydrodynamic expansion by heating of the stellar soft X-rays and extreme ultraviolet (XUV) radiation and thermal escape via blow-off. Depending on orbit location, XUV flux, heating efficiency and the planet's mean density our results indicate that the upper atmospheres of all 'super-Earths' can expand to large distances, so that except for Kepler-11c all of them experience atmospheric mass-loss due to Roche lobe overflow. The atmospheric mass loss of the studied 'super-Earths' is one to two orders of magnitude lower compared to that of 'hot Jupiters' such as HD 209458b, so that one can expect that these exoplanets cannot lose their hydrogen envelopes during their remaining lifetimes.


Доп.точки доступа:
Lammer, H.; Erkaev, N.V.; Еркаев, Николай Васильевич; Odert, P.; Kislyakova, K.G.; Leitzinger, M.; Khodachenko, M.L.

    On electric field penetration from ground into the ionosphere
[Text] : статья / V.V. Denisenko [et al.] // J. Atmos. Sol.-Terr. Phys. - 2013. - Vol. 102. - P341-353, DOI 10.1016/j.jastp.2013.05.019. - Cited References: 29. - This work is supported by Grants 09-06-91000, 12-05-00152 from the Russian Foundation for Basic Research. Additional support is due to the Austrian "Fonds zur Forderung der wissenschaftlichen Forschung" under Project I193-N16 and the "Verwaltungsstelle fur Auslandsbeziehungen" of the Austrian Academy of Sciences. The authors are grateful to the unknown reviewers for the fruitful detailed discussion. . - 13. - ISSN 1364-6826
РУБ Geochemistry & Geophysics + Meteorology & Atmospheric Sciences

Аннотация: A quasi stationary three dimensional model of electric fields and currents in the conductor that includes the Earth's atmosphere and ionosphere is created. The results of the three dimensional model are simpler regarding interpretation and explanation than two dimensional ones. Known approaches regarding the ionosphere as a boundary condition at the upper boundary of the atmospheric conductor are analyzed. For the investigation of the electric field penetration from ground into the ionosphere it is sufficient to take into account only integral conductivity of the ionosphere. A mathematical simulation has shown that the resulting electric field in the ionosphere is negligible in contrast to the general point of view that such a penetration is a physical process which potentially creates ionospheric precursors of earthquakes. (C) 2013 Elsevier Ltd. All rights reserved.

Полный текст

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Denisenko, V.V.; Денисенко, Валерий Васильевич; Ampferer, M.; Pomozov, E.V.; Помозов, Егор Владимирович; Kitaev, A.V.; Китаев, Анатолий Валерьевич; Hausleitner, W.; Stangl, G.; Biernat, H.K.; Russian Foundation for Basic Research [09-06-91000, 12-05-00152]; Austrian "Fonds zur Forderung der wissenschaftlichen Forschung" [I193-N16]; "Verwaltungsstelle fur Auslandsbeziehungen" of the Austrian Academy of Sciences

    Justification of the Two-Dimensional Model of Electroconductivity for the Earth's Ionosphere
[Text] : статья / V.V.Denisenko // Computational Research. - 2013. - Vol. 1, № 2. - p. 34 - 51DOI 10.13189/cr.2013.010203 . -

Кл.слова (ненормированные):
elliptical equation -- hyrotropic medium -- energy method -- electric field -- atmosphere -- ionosphere

Аннотация: Conventional two dimensional model for electric fields in the Earth’s ionosphere is analyzed to estimate its error. The main difficulties arise due to asymmetry of the conductivity tensor. We use the energy method and small parameter expansion. To make it possible in spite of asymmetry of the tensor coefficients the problem is reduced to the problem of minimum of proper quadratic energy functional. The variational principle is stated and proved for the 3-D boundary value problem. The error of the 2-D approximation is analyzed in the case, when conductor occupies a flat layer 0 < z < z0 and is homogeneous in z direction, and the vector of magnetic field has only z component. The results of numerical simulation of the electric field penetration from ground to the Earth’s ionosphere with reduction of the 3-D model of the ionospheric conductor to the 2-D model are presented. Precision of such an approach is demonstrated.

Полный текст

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Денисенко, Валерий Васильевич

    Decrease of the electric field penetration into the ionosphere due to low conductivity at the near ground atmospheric layer
[Text] / M. Ampferer [et al.] // Ann. Geophys. - 2010. - Vol. 28, Is. 3. - pp. 779-787. - Cited References: 30. - This work is supported by grants 07 05 00135, 09-06-91000 from the Russian Foundation for Basic Research and by the Program 16.3 of the Russian Academy of Sciences. Additional support is due to the Austrian "Fonds zur Forderung der wissenschaftlichen Forschung" under Project I193-N16 and the "Verwaltungsstelle fur Auslandsbeziehungen" of the Austrian Academy of Sciences. The authors are grateful to the referees whose comments helped considerably to improve the paper. . - ISSN 0992-7689
РУБ Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: It is well known that lithospheric electromagnetic emissions are generated before earthquakes occurrence. In our study, we consider the physical penetration mechanism of the electric field from the Earth's surface, through the atmosphere-ionosphere layers, and until its detection in space by satellites. A simplified approach is investigated using the electric conductivity equation, i.e., del((sigma) over cap.del Phi) = 0 in the case of a vertical inclination of the geomagnetic field lines. Particular interest is given to the conductivity profile near the ground and the electric field distribution at the Earth's surface. Our results are discussed and compared to the models of Pulinets et al. (2003) and Denisenko et al. (2008). It is shown that the near ground atmospheric layer with low conductivity decreases the electric field penetration into the ionosphere. The model calculations have demonstrated that the electric field of lithospheric origin is too weak to be observed at satellite altitudes.


Доп.точки доступа:
Ampferer, M.; Denisenko, V.V.; Денисенко, Валерий Васильевич; Hausleitner, W.; Krauss, S.; Stangl, G.; Boudjada, M.Y.; Biernat, H.K.

    XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part I: Atmospheric Expansion and Thermal Escape
[Text] / N. V. Erkaev [et al.] // Astrobiology. - 2013. - Vol. 13, Is. 11. - P1011-1029, DOI 10.1089/ast.2012.0957. - Cited References: 92. - M. Gudel, K. G. Kislyakova, M. L. Khodachenko, and H. Lammer acknowledge support by the FWF NFN project S116 601-N16 "Pathways to Habitability: From Disks to Active Stars, Planets and Life" and the related FWF NFN subprojects S116 604-N16 "Radiation & Wind Evolution from T Tauri Phase to ZAMS and Beyond," S116 606-N16 "Magnetospheric Electrodynamics of Exoplanets," S116 607-N16 "Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies under Extreme Stellar Conditions." K. G. Kislyakova, Yu. N. Kulikov, H. Lammer, and P. Odert thank also the Helmholtz Alliance project "Planetary Evolution and Life." P. Odert and A. Hanslmeier also acknowledge support from the FWF project P22950-N16. The authors also acknowledge support from the EU FP7 project IMPEx (No. 262863) and the EUROPLANET-RI projects, JRA3/EMDAF and the Na2 science WG5. The authors thank the International Space Science Institute (ISSI) in Bern and the ISSI team "Characterizing stellar and exoplanetary environments." N. V. Erkaev acknowledges support by the RFBR grant No 12-05-00152-a. Finally, the authors thank referee Tian Feng, from the Tsinghua University, Beijing, China, for suggestions and recommendations that helped to improve the work. . - 19. - ISSN 1531-1074
РУБ Astronomy & Astrophysics + Biology + Geosciences, Multidisciplinary

Аннотация: The recently discovered low-density super-Earths Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H2O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R-Earth and a mass of 10 M-Earth. We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general. Key Words: Stellar activityLow-mass starsEarly atmospheresEarth-like exoplanetsEnergetic neutral atomsIon escapeHabitability. Astrobiology 13, 1011-1029.

WOS,
Scopus

Держатели документа:
[Erkaev, Nikolai V.] Russian Acad Sci, Siberian Div, Inst Computat Modelling, Krasnoyarsk 660036, Russia
[Erkaev, Nikolai V.] Siberian Fed Univ, Krasnoyarsk, Russia
[Lammer, Helmut
Odert, Petra
Kislyakova, Kristina G.
Khodachenko, Maxim L.
Biernat, Helfried] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria
[Odert, Petra
Kislyakova, Kristina G.
Hanslmeier, Arnold] Graz Univ, Inst Phys, Graz, Austria
[Kulikov, Yuri N.] Russian Acad Sci, Polar Geophys Inst, Murmansk, Russia
[Khodachenko, Maxim L.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia
[Guedel, Manuel] Univ Vienna, Inst Astrophys, A-1010 Vienna, Austria
ИВМ СО РАН

Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Lammer, H.; Odert, P.; Kulikov, Y.N.; Kislyakova, K.G.; Khodachenko, M.L.; Gudel, M.; Hanslmeier, A.; Biernat, H.K.; FWF NFN project [S116 601-N16, S116 604-N16, S116 606-N16, S116 607-N16]; FWF project [P22950-N16]; EU [262863]; EUROPLANET-RI projects; JRA3/EMDAF; Na2 science WG5; RFBR [12-05-00152-a]

    XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen coronae and ion escape
/ K. G. Kislyakova [et al.] // Astrobiology. - 2013. - Vol. 13, Is. 11. - P1030-1048, DOI 10.1089/ast.2012.0958 . - ISSN 1531-1074

Кл.слова (ненормированные):
Early atmospheres -- Earth-like exoplanets -- Energetic neutral atoms -- Habitability -- Ion escape -- Low-mass stars -- Stellar activity

Аннотация: We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R Earth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s-1 to ∼5.3×1030 s-1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to <3 EOH and usually is several times smaller in comparison to the thermal atmospheric escape rates. © 2013 Mary Ann Liebert, Inc.

Scopus

Держатели документа:
Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042 Graz, Austria
Institute of Physics, University of Graz, Graz, Austria
Swedish Institute of Space Physics, Kiruna, Sweden
Institute of Computational Modelling, Siberian Division of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
SINP, Moscow State University, Moscow, Russian Federation
Polar Geophysical Institute (PGI), Russian Academy of Sciences, Murmansk, Russian Federation
Institute of Astrophysics, University of Vienna, Austria
ИВМ СО РАН

Доп.точки доступа:
Kislyakova, K.G.; Lammer, H.; Holmstrom, M.; Panchenko, M.; Odert, P.; Erkaev, N.V.; Еркаев, Николай Васильевич; Leitzinger, M.; Khodachenko, M.L.; Kulikov, Y.N.; Gudel, M.; Hanslmeier, A.

    Mass loss from "Hot Jupiters" - Implications for CoRoT discoveries, Part II: Long time thermal atmospheric evaporation modeling
[Text] / T. Penza [et al.] // Planet Space Sci. - 2008. - Vol. 56, Is. 9. - P1260-1272, DOI 10.1016/j.pss.2008.04.005. - Cited References: 53 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: We investigate the efficiency of the atmospheric mass loss due to hydrodynamic blow-off over the lifetime of the exoplanet HD209458b by studying numerically its hydrogen wind for host star X-ray and EUV (XUV) fluxes between 1 and 100 times that of the present Sun. We apply a time-dependent numerical algorithm which is able to solve the system of hydrodynamic equations straight through the transonic point of the flow including Roche lobe effects. The mass loss rates are calculated as functions of the absorbed energy in the thermosphere. Depending on the heating efficiency for a hydrogen-rich thermosphere the maximum temperature obtained in our study at 1.5R(p1) by neglecting IR cooling is about 5000-10,000 K for heating efficiencies of 10% and 60%, respectively. We find that the upper atmosphere of HD209458b experiences hydrodynamic blow-off even at such low temperatures if one does not neglect gravitational effects caused by the proximity of the planet to its Roche lobe boundary. Depending on the heating efficiency, we find from the solution of the hydrodynamic equations of mass, momentum, and energy balance that energy-limited mass loss rate estimations overestimate the realistic mass loss rate at present time for HD209458b by several times. Using the maximum heating efficiency for hydrogen-rich atmospheres of 60% we find that HD209458b may experience an atmospheric mass loss rate at present time of about 3.5 x 10(10) g s(-1). The mass loss rate evolves to higher values for higher XUV fluxes expected during the early period of the planet's host star evolution, reaching values of several times 10(12) gs(-1). The integrated mass loss is found to be between 1.8% and 4.4% of the present mass of HD209458b. We found that the influence of the stellar tidal forces on atmospheric loss (the Roche lobe effect) is not significant at 0.045 AU. For a similar exoplanet, but at closer orbital distances <= 0.02 AU, the combined effect of the Roche lobe and the high XUV radiation result in much higher thermal loss rates of about 2.6 x 10(11) g s(-1) and even more for early stages. This leads to a total loss over 4 Gyr of 27.5% of the planetary mass. (c) 2008 Elsevier Ltd. All rights reserved.

Полный текст на сайте правообладателя


Доп.точки доступа:
Penza, T.; Erkaev, N.V.; Еркаев, Николай Васильевич; Kulikov, Y.N.; Langmayr, D.; Lammer, H.; Micela, G.; Cecchi-Pestellini, C.; Biernat, H.K.; Selsis, F.; Barge, P.; Deleuil, M.; Leger, A.

    Shear driven waves in the induced magnetosphere of Mars
[Text] / H. Gunell [et al.] // Plasma Phys. Control. Fusion. - 2008. - Vol. 50, Is. 7. - Ст. 74018, DOI 10.1088/0741-3335/50/7/074018. - Cited References: 27 . - ISSN 0741-3335
РУБ Physics, Fluids & Plasmas + Physics, Nuclear

Аннотация: We present measurements of oscillations in the electron density, ion density and ion velocity in the induced magnetosphere of Mars. The fundamental frequency of the oscillations is a few millihertz, but higher harmonics are present in the spectrum. The oscillations are observed in a region where there is a velocity shear in the plasma flow. The fundamental frequency is in agreement with computational results from an ideal-MHD model. An interpretation based on velocity-shear instabilities is described.


Доп.точки доступа:
Gunell, H.; Amerstorfer, U.V.; Nilsson, H.; Grima, C.; Koepke, M.; Franz, M.; Winningham, J.D.; Frahm, R.A.; Sauvaud, J.A.; Fedorov, A.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Holmstrom, M.; Lundin, R.; Barabash, S.

    Roche lobe effects on the atmospheric loss from "Hot Jupiters"
[Text] / N. V. Erkaev [et al.] // Astron. Astrophys. - 2007. - Vol. 472, Is. 1. - P329-334, DOI 10.1051/0004-6361:20066929. - Cited References: 26 . - ISSN 0004-6361
РУБ Astronomy & Astrophysics

Аннотация: Context. A study of the mass loss enhancement for very close "Hot Jupiters" due to the gravitational field of the host star is presented. Aims. The influence of the proximity to a planet of the Roche lobe boundary on the critical temperature for blow-off conditions for estimating the increase of the mass loss rate through hydrodynamic blow-off for close-in exoplanets is investigated. Methods. We consider the gravitational potential for a star and a planet along the line that joins their mass centers and the energy balance equation for an evaporating planetary atmosphere including the effect of the stellar tidal force on atmospheric escape. Results. By studying the effect of the Roche lobe on the atmospheric loss from short-periodic gas giants we derived reasonably accurate approximate formulas to estimate atmospheric loss enhancement due to the action of tidal forces on a "Hot Jupiter" and to calculate the critical temperature for the onset of "geometrical blow-off", which are valid for any physical values of the Roche lobe radial distance. Using these formulas, we found that the stellar tidal forces can enhance the hydrodynamic evaporation rate from TreS-1 and OGLE-TR-56b by about 2 fold, while for HD 209458b we found an enhancement of about 50%. For similar exoplanets which are closer to their host star than OGLE-TR-56b, the mass loss enhancement can be even larger. Moreover, we showed that the effect of the Roche lobe allows "Hot Jupiters" to reach blow-off conditions at temperatures which are less than expected due to the stellar X-ray and EUV heating.


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Kulikov, Y.N.; Lammer, H.; Selsis, F.; Langmayr, D.; Jaritz, G.F.; Biernat, H.K.

    Mass loss of "Hot Jupiters " - Implications for CoRoT discoveries. Part I: The importance of magnetospheric protection of a planet against ion loss caused by coronal mass ejections
[Text] / M. L. Khodachenko [et al.] // Planet Space Sci. - 2007. - Vol. 55: Symposium on Exoplanets and Planetary Formation (APR 25-30, 2004, Nice, FRANCE), Is. 5. - P631-642, DOI 10.1016/j.pss.2006.07.010. - Cited References: 63 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: Atmospheric erosion due to CME-caused ion pick-up is investigated here for the first time for short periodic gas giants (so-called "Hot Jupiters") orbiting close to a star, To study the effect of encountering CMEs produced on the inagnetospheres and atmospheres of "Hot Jupiters" we model possible interaction of dense CME plasma with the exoplanet HD209458b (r(pl) = 1.43r(Jup) M(pl) = 0.69 M(jup)), which orbits a 4.0-5.0 Gyr old Sun-like star at a distance of about 0.045 AU. A numerical hydrodynamic model is applied for calculation of the upper atmospheric density and the hydrogen wind of HD209458b Lis a function of planetocentric distance. Taking into account the similarity of HD209458b's host star to Our Sun we use for the study of the ion production and loss rate of H(+) ions the solar CME plasma parameters and apply a numerical test particle model. Tidal-locking of short periodic exoplanets closely located to their host stars should result in weaker intrinsic planetary magnetic moments, as compared to those of the fast rotating Jupiter type planets at much larger orbits. It is shown that in this case the encountering CME plasma can compress the magnetospheric stand-off distance of short periodic "Hot Jupiters" down to the heights Lit which the ionization and pick-LIP of the planetary neutral atmosphere by the CME plasma flow take place. Assuming for the host star of HD209458b the same CME occurrence rate Lis on the Suit, we estimate possible total mass loss rates of HD2094581b due to its collisions with CMEs over the planet lifetime. It has been found that Under different estimations of the value of a planetary magnetic moment, HD209458b Could have lost over its lifetime the mass from 0-2 up to several times of its present mass M(pl). (c) 2006 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Khodachenko, M.L.; Lammer, H.; Lichtenegger, H.I.M.; Langmayr, D.; Erkaev, N.V.; Еркаев, Николай Васильевич; Griessmeier, J.M.; Leitner, M.; Penz, T.; Biernat, H.K.; Motschmann, U.; Rucker, H.O.

    Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones
[Text] / H. . Lammer [et al.] // Astrobiology. - 2007. - Vol. 7, Is. 1. - P185-207, DOI 10.1089/ast.2006.0128. - Cited References: 104 . - ISSN 1531-1074
РУБ Astronomy & Astrophysics + Biology + Geosciences, Multidisciplinary

Аннотация: Atmospheric erosion Of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wavelengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 mu m band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O+ ion pick up at orbital distances <= 0.2 astronomical units. We have found that, when exposed to intense XUV fluxes, atmospheres with CO2/N-2 mixing ratios lower than 96% will show an increase in exospheric temperatures and expanded thermosphere-exosphere environments. Hence, they suffer stronger atmospheric erosion, which can result in the total loss of several hundred bars even if an exoplanet is protected by a "magnetic shield" with its boundary located at I Earth radius above the surface. Furthermore, our study indicates that magnetic moments of tidally locked Earth-like exoplanets are essential for protecting their expanded upper atmospheres because of intense XUV radiation against CME plasma erosion. Therefore, we suggest that larger and more massive terrestrial-type exoplanets may better protect their atmospheres against CMEs, because the larger cores of such exoplanets would generate stronger magnetic moments and their higher gravitational acceleration would constrain the expansion of their thermosphere-exosphere regions and reduce atmospheric escape.


Доп.точки доступа:
Lammer, H.; Lichtenegger, H.I.M.; Kulikov, Y.N.; Griessmeier, J.M.; Terada, N.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Khodachenko, M.L.; Ribas, I.; Penz, T.; Selsis, F.

    Roche lobe effects on expanded upper atmospheres of short-periodic giant exoplanets
[Text] / G. F. Jaritz [et al.] // Astron. Astrophys. - 2005. - Vol. 439, Is. 2. - P771-775, DOI 10.1051/0004-6361:20052946. - Cited References: 32 . - ISSN 0004-6361
РУБ Astronomy & Astrophysics

Аннотация: Theoretical studies and recent observational evidence of the expansion of the atmospheres of short-periodic exoplanets show that the atmospheres extend up to several planetary radii. This indicates that the atmospheres experience blow-off conditions. Because of the short orbital distance to their host stars, the expansion of the upper atmosphere is no longer radially symmetric, but depends on the direction to the central body, resulting in a deformation of the expanded atmosphere. We show the connection between atmospheric expansion, tidal forces and effects of the Roche potential and find that HD209458 b, OGLE-TR-10 b and OGLE-TR-111 b are most likely in a state of classical hydrodynamical blow-off because the distance where blow-off can occur is less than the distance to the Lagrangian point L1. On the other hand, OGLE-TR-56 b, OGLE-TR-113 b, OGLE-TR-132 b and TreS-1 experience a geometrical blow-off defined by the Roche lobe as proposed by Lecavelier des Etangs et al. (2004, A&A, 418, L1). Our results have important implications for the evolution of short periodic gas giants, because the Roche lobe overflow of the atmosphere can lead to lower mass loss rates over the exoplanets history, compared to gas giants which experience hydrodynamic expansion and loss unaffected by this boundary. Thus, massive exoplanets like OGLE-TR-56 b in very close orbital distances are subject to geometrical blow-off conditions, this results in a total mass loss for this particular exoplanet of the order of about 3 x 10(-2) M-pl over the planets age, even if current mass loss rates of about 2 x 10(11) g s(-1) are calculated. If the exoplanet effected by the geometrical blow-off is more massive, the mass loss rate is even lower. However, giant exoplanets like HD209458 b, OGLE-TR-10 b and OGLE-TR-111 b at orbital distances of about 0.05 AU may experience classical hydrodynamic blow-off conditions, which can result in higher mass loss rates. Thus, such planets may shrink to their core sizes during the X-ray and EUV active periods of their host stars as proposed by Lammer et al. ( 2003, ApJ, L121, 598) and Bara. e et al. (2004, A& A, 419, L13).


Доп.точки доступа:
Jaritz, G.F.; Endler, S.; Langmayr, D.; Lammer, H.; Griessmeier, J.M.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.

    Plasma and magnetic field parameters in the vicinity of short-periodic giant exoplanets
[Text] / N. V. Erkaev [et al.] // Astrophys. J. Suppl. Ser. - 2005. - Vol. 157, Is. 2. - P396-401, DOI 10.1086/427904. - Cited References: 48 . - ISSN 0067-0049
РУБ Astronomy & Astrophysics

Аннотация: During the past years, more than 130 giant planets were discovered in extrasolar planetary systems. Because of the fact that the orbital distances are very close to their host stars, these planets are embedded in a dense stellar wind, which can pick up planetary ions. We model the stellar wind interaction of the short-periodic exoplanets OGLE-TR-56b and HD 209458b at their orbital distances of approximate to 0.023 AU and approximate to 0.045 AU, by calculating the Alfven Mach number and the magnetosonic Mach number in the stellar wind plasma flow. We then analyze the different plasma interaction regimes around the planetary obstacles, which appear for different stellar wind parameters. Our study shows that the stellar wind plasma parameters like temperature, interplanetary magnetic field, particle density, and velocity near planetary obstacles at orbital distances closer than 0.1-0.2 AU have conditions such that no bow shocks evolve. Our study shows also that these close-in exoplanets are in a submagnetosonic regime comparable to the magnetospheric plasma interaction of the inner satellites of Jupiter and Saturn. Furthermore, we compare the results achieved for both exoplanets with the Jupiter-class exoplanet HD 28185b at its orbital distance of approximate to 1.03 AU. Finally, we also discuss the behavior of the stellar wind plasma flow close to the planetary obstacles of two highly eccentric gas giants, namely, HD 108147b and HD 162020b. Because of their eccentric orbits, these two exoplanets periodically experience both regimes with and without a bow shock. Finally, we simulate the neutral gas density of HD 209458b with a Monte Carlo model. By using the plasma parameters obtained in our study we calculate the ion production and loss rate of H+ with a test particle model. Our simulations yield H+ loss rates for HD 209458b or similar giant exoplanets in orders of about 10(8)-10(9) g s(-1). These ion loss rates are at least 1 order of magnitude lower than the observed loss rate of evaporating neutral H atoms. Our study indicates, that similar gas giants at larger orbital distances have lower ion loss rates. Thus, the dominating component of particle loss of short-periodic Jupiter-class exoplanets will be neutral hydrogen.


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Penz, T.; Lammer, H.; Lichtenegger, H.I.M.; Biernat, H.K.; Wurz, P.; Griessmeier, J.M.; Weiss, W.W.

    Stellar-planetary relations: Atmospheric stability as a prerequisite for planetary habitability
[Text] / H. Lammer [et al.] // Celest. Mech. Dyn. Astron. - 2005. - Vol. 92, Is. 01.03.2013. - P273-285, DOI 10.1007/s10569-005-0004-4. - Cited References: 27 . - ISSN 0923-2958
РУБ Astronomy & Astrophysics + Mathematics, Interdisciplinary Applications

Аннотация: The region around a star where a life-supporting biosphere can evolve is the so-called Habitable Zone (HZ). The current definition of the HZ is based only on the mass-luminosity relation of the star and climatological and meteorological considerations of Earth-like planets, but neglects atmospheric loss processes due to the interaction with the stellar radiation and particle environment. From the knowledge of the planets in the Solar System, we know that planets can only evolve into a habitable world if they have a stable orbit around its host star and if they keep the atmosphere and water inventory during: (i) the period of heavy bombardment by asteroids and comets and (ii) during the host stars' active X-ray and extreme ultraviolet (XUV) and stellar wind periods. Impacts play a minor role for planets with the size and mass like Earth, while high XUV fluxes and strong stellar winds during the active periods of the young host star can destroy the atmospheres and water inventories. We show that XUV produced temperatures in the upper atmospheres of Earth-like planets can lead to hydrodynamic "blow off", resulting in the total loss of the planets water inventory and atmosphere, even if their orbits lie inside the HZ. Further, our study indicates that Earth-like planets inside the HZ of low mass stars may not develop an atmosphere, because at orbital distances closer than 0.3 AU, their atmospheres are highly affected by strong stellar winds and coronal mass ejections (CME's). Our study suggests that planetary magnetospheres will not protect the atmosphere of such planets, because the strong stellar wind of the young star can compress the magnetopause to the atmospheric obstacle. Moreover, planets inside close-in HZ's are tidally locked, therefore, their magnetic moments are weaker than those of an Earth-like planet at 1 AU. Our results indicate that Earth-like planets in orbits of low mass stars may not develop stable biospheres. From this point of view, a HZ, where higher life forms like on Earth may evolve is possibly restricted to higher mass K stars and G stars.


Доп.точки доступа:
Lammer, H.; Kulikov, Y.N.; Penz, T.; Leitner, M.; Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич

    Solar System magnetospheres
[Text] / M. Blanc, R. Kallenbach, N. V. Erkaev // Space Sci. Rev. - 2005. - Vol. 116: Workshop on Comparative Study of the Outer Planets before the Exploration of Saturn (JAN 12-14, 2004, Bern, SWITZERLAND), Is. 01.02.2013. - P227-298, DOI 10.1007/s11214-005-1958-y. - Cited References: 202 . - ISSN 0038-6308
РУБ Astronomy & Astrophysics

Аннотация: This article proposes a short review of our present knowledge of solar system magnetospheres, with the purpose of placing the study of Saturn's inagnetosphere in the context of a comparative approach. We describe the diversity of solar system magnetospheres and the underlying causes of this diversity: nature and magnetization state of the planetary obstacle, presence or not of a dense atmosphere, rotation state of the planet, existence of a system of satellites, rings and neutral gas populations in orbit around the planet. We follow the "russian doll" hierarchy of solar system magnetospheres to briefly describe the different objects of this family: the heliosphere, which is the Sun's magnetosphere; the "elementary" magnetospheres of the inner planets, Earth and Mercury; the "complex" magnetospheres of the giant planets, dominated by planetary rotation and the presence of interacting objects within their magnetospheric cavities, some of which, like Ganymede, to or Titan, produce small intrinsic or induced magnetospheres inside the large one. We finally describe the main original features of Saturn's magnetosphere as we see them after the Voyager fly-bys and before the arrival of Cassini at Saturn, and list some of the key questions which Cassini will have to address during its four-year orbital tour.


Доп.точки доступа:
Blanc, M.; Kallenbach, R.; Erkaev, N.V.; Еркаев, Николай Васильевич

    Loss of hydrogen and oxygen from the upper atmosphere of Venus
[Text] / H. Lammer [et al.] // Planet Space Sci. - 2006. - Vol. 54, Is. 13-14. - P1445-1456, DOI 10.1016/j.pss.2006.04.022. - Cited References: 93 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: Atmospheric escape from the upper atmosphere of Venus is mainly influenced by the loss of hydrogen and oxygen caused by the interaction of solar radiation and particle flux with the unprotected planetary environment. Because one main aim of the ASPERA-4 particle/plasma and VEX-MAG magnetic field experiments on board of ESA's forthcoming Venus Express mission is the investigation of atmospheric erosion processes from the planet's ionosphere-exosphere environment, we study the total loss of hydrogen and oxygen and identified the efficiency of several escape mechanisms involved. For the estimation of pick up loss rates we use a gas dynamic test particle model and obtained average loss rates for H+, and O+ pick up ions of about 1 x 10(25) s(-1) and about 1.6 x 10(25) s(-1), respectively. Further, we estimate ion loss rates due to detached plasma clouds, which were observed by the pioneer Venus orbiter and may be triggered by the Kelvin-Helmholtz instability of about 0.5-1 x 10(25) s(-1). Thermal atmospheric escape processes and atmospheric loss by photo-chemically produced oxygen atoms yield negligible loss rates. Sputtering by incident pick up O+ ions give O atom loss rates in the order of about 6 x 10(24) s(-1). On the other hand, photo-chemically produced hot hydrogen atoms are a very efficient loss mechanism for hydrogen on Venus with a global average total loss rate of about 3.8 x 10(25) s(-1), which is in agreement with Donahue and Hartle [1992. Solar cycle variations in H+ and D+ densities in the Venus ionosphere: implications for escape. Geophys. Res. Lett. 12, 2449-2452] and of the same order but less than the estimated H+ ion outflow on the Venus nightside of about 7.0 x 10(25) s(-1) due to acceleration by an outward electric polarization force related to ionospheric holes by Hartle and Grebowsky [1993. Light ion flow in the nightside ionosphere of Venus. J. Geophys. Res. 98, 7437-7445]. Our study indicates that on Venus, due to its larger mass and size compared to Mars, the most relevant atmospheric escape processes of oxygen involve ions and are caused by the interaction with the solar wind. The obtained results indicate that the ratio between H/O escape to space from the Venusian upper atmosphere is about 4, and is in a much better agreement with the stoichiometrically H/O escape ratio of 2:1, which is not the case on Mars. However, a detailed analysis of the outflow of ions from the Venus upper atmosphere by the ASPERA-4 and VEX-MAG instruments aboard Venus Express will lead to more accurate atmospheric loss estimations and a better understanding of the planet's water inventory. (c) 2006 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Lammer, H.; Lichtenegger, H.I.M.; Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич; Arshukova, I.L.; Kolb, C.; Gunell, H.; Lukyanov, A.; Holmstrom, M.; Barabash, S.; Zhang, T.L.; Baumjohann, W.

    Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations?
[Text] / H. . Lammer [et al.] // Astron. Astrophys. - 2009. - Vol. 506, Is. 1. - P399-410, DOI 10.1051/0004-6361/200911922. - Cited References: 46. - The authors thank the anonymous referee for constructive comments and suggestions which helped to improve the paper. H. Lammer, P. Odert, M. Leitzinger, M. L. Khodachenko and A. Hanslmeier gratefully acknowledge the Austrian Fonds zur Forderung der wissenschaftlichen Forschung (FWF grant P19446) for supporting this project. M. Panchenko and M. L. Khodachenko acknowledge also the Austrian Fonds zur Forderung der wissenschaftlichen Forschung (project P20680-N16). H. Lammer, H. I. M. Lichtenegger, H. K. Biernat, Yu. N. Kulikov and N. V. Erkaev thank the AAS "Verwaltungsstelle fur Auslandsbeziehungen" and the RAS. H. Lammer, H. I. M. Lichtenegger, M. L. Khodachenko and Yu. N. Kulikov acknowledge support from the Helmholtz-Gemeinschaft as this research has been supported by the Helmholtz Association through the research alliance "Planetary Evolution and Life". H. Lammer, M. L. Khodachenko, T. Penz, and Yu. N. Kulikov also acknowledge the International Space Science Institute (ISSI; Bern, Switzerland) and the ISSI teams "Evolution of Habitable Planets" and "Evolution of Exoplanet Atmospheres and their Characterization". H. K. Biernat acknowledges additional support due to the Austrian Science Fund under project P20145-N16. The authors also acknowledge fruitful discussions during various meetings related to the Europlanet N2 activities as well as within the N2 Exoplanet discipline working group DWG 7. T. Penz and G. Micela acknowledge support by the Marie Curie Fellowship Contract No. MTKD-CT-2004-002769 of the project "The influence of stellar high radiation on planetary atmospheres". The authors also thank the Austrian Ministry bm:bwk and ASA for funding the CoRoT project. . - ISSN 0004-6361
РУБ Astronomy & Astrophysics

Аннотация: Aims. We study the possible atmospheric mass loss from 57 known transiting exoplanets around F, G, K, and M-type stars over evolutionary timescales. For stellar wind induced mass loss studies, we estimate the position of the pressure balance boundary between Coronal Mass Ejection (CME) and stellar wind ram pressures and the planetary ionosphere pressure for non- or weakly magnetized gas giants at close orbits. Methods. The thermal mass loss of atomic hydrogen is calculated by a mass loss equation where we consider a realistic heating efficiency, a radius-scaling law and a mass loss enhancement factor due to stellar tidal forces. The model takes into account the temporal evolution of the stellar EUV flux by applying power laws for F, G, K, and M-type stars. The planetary ionopause obstacle, which is an important factor for ion pick-up escape from non- or weakly magnetized gas giants is estimated by applying empirical power-laws. Results. By assuming a realistic heating efficiency of about 10-25% we found that WASP-12b may have lost about 6-12% of its mass during its lifetime. A few transiting low density gas giants at similar orbital location, like WASP-13b, WASP-15b, CoRoT-1b or CoRoT-5b may have lost up to 1-4% of their initial mass. All other transiting exoplanets in our sample experience negligible thermal loss (<= 1%) during their lifetime. We found that the ionospheric pressure can balance the impinging dense stellar wind and average CME plasma flows at distances which are above the visual radius of "Hot Jupiters", resulting in mass losses <2% over evolutionary timescales. The ram pressure of fast CMEs cannot be balanced by the ionospheric plasma pressure for orbital distances between 0.02-0.1 AU. Therefore, collisions of fast CMEs with hot gas giants should result in large atmospheric losses which may influence the mass evolution of gas giants with masses
Scopus,
Смотреть статью


Доп.точки доступа:
Lammer, H.; Odert, P.; Leitzinger, M.; Khodachenko, M.L.; Panchenko, M.; Kulikov, Y.N.; Zhang, T.L.; Lichtenegger, H.I.M.; Erkaev, N.V.; Еркаев, Николай Васильевич; Wuchterl, G.; Micela, G.; Penz, T.; Biernat, H.K.; Weingrill, J.; Steller, M.; Ottacher, H.; Hasiba, J.; Hanslmeier, A.; Austrian Fonds zur Forderung der wissenschaftlichen Forschung [P19446, P20680-N16]; Helmholtz Association; Austrian Science Fund [P20145-N16]; "The influence of stellar high radiation on planetary atmospheres" [MTKD-CT-2004-002769]

    Penetration of Electric Field from the Near Ground Atmospheric Layer to the Ionosphere
[Text] / V. V. Denisenko, E. V. Pomozov // Geomagn. Aeron. - 2011. - Vol. 51, Is. 7. - P866-872, DOI 10.1134/S0016793211070048. - Cited References: 13. - The work was supported by the Russian Foundation for Basic Research, project no. 09-06-91000. The authors are grateful to A.A. Namgaladze for a substantive, although not consensus-inducing, discussion of the work, as well as to colleagues from the Institute of Cosmic Research of the Austrian Academy of Sciences, with whom jointly this cycle of studies was carried out. . - ISSN 0016-7932
РУБ Geochemistry & Geophysics

Аннотация: A mathematical model has been proposed for describing quasi-stationary atmospheric electric fields with approximate, but fairly accurate allowance for ionospheric conductivity. It is shown that some well-known models of electric field penetration from the Earth into the ionosphere have been deemed inadequate, though they work well in the atmosphere below 50 km. In these models, the arbitrarily specified boundary condition in the upper boundary of the atmosphere omits the existing good conductor or adds not existent conductor. The maximum possible field in our model is far less than in models where ionospheric conductivity is not taken into account, but vastly larger than in models based on the approximation with infinite Pedersen conductivity in the upper ionosphere.


Доп.точки доступа:
Pomozov, E.V.; Помозов, Егор Владимирович; Денисенко, Валерий Васильевич