Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 225
   В3
   E68

    Ideal Magnetohydrodynamic Flow Around a Blunt Body under Anisotropic Pressure
[Text]. - Electronic data (106 Kb)
. - Режим доступа: http://icm.krasn.ru/refextra.php?id=1472. - Электрон. версия печ. публикации . - Режим доступа: http://library.krasn.ru/trudy/2000/1472erkaev_PHP03413_eng.pdf (Полный текст) : статья / Erkaev N.V., Biernat H.K., Farrugia C.J. - Electronic data (106 Kb) // Physics of Plasmas. - 2000. - Vol. 7, № 7. - p. 3413-3420
ГРНТИ

Аннотация: The plasma flow past a blunt obstacle in an ideal magnetohydrodynamic ~MHD! model is studied, taking into account the tensorial nature of the plasma pressure. Three different closure relations are explored and compared with one another. The first one is the adiabatic model proposed by Chew, Goldberger, and Low. The second closure is based on the mirror instability criterion, while the third depends on an empirical closure equation obtained from observations of solar wind flow past the Earth's magnetosphere. The latter is related with the criterion of the anisotropic ion cyclotron instability. In the presented model, the total pressure, defined as the sum of magnetic pressure and perpendicular plasma pressure, is assumed to be a known function of Cartesian coordinates. The calculation is based on the Newtonian approximation for the total pressure along the obstacle and on a quadratic behavior with distance from the obstacle along the normal direction. Profiles of magnetic field strength and plasma parameters are presented along the stagnation stream line between the shock and obstacle of an ideal plasma flow with anisotropy in thermal pressure and temperature.

http://icm.krasn.ru/refextra.php?id=1472,
Полный текст

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Biernat, H.K.; Farrugia, C.J.; Еркаев, Николай Васильевич
   В3
   V30

    MHD-Control of Gas Flow in the Tract Hypersonic Ramjet Engine
[Text] : статья / E. N. Vasilyev, V. A. Derevyanko, A. N. Mierau // The 3rd Workshop on Magneto-Plasma Aerodynamics in Aerospase Applications. - Moscow, 2001. - p. 160-164
ГРНТИ

Аннотация: Nowadays in leading countries of the world active research has been conducted on developing the perspective hypersonic aerospace aircraft. One of the key directions of research on this problem is the development highly efficient hypersonic ramjet engine (HRE). It is known that the efficiency of HRE with supersonic flow velocities in the combustion chamber decreases with the increasing of flight velocities. The basic losses take place in the combustion chamber as firstly the relative losses of working capacity of gas is considerably increasing at the heat supply, secondly because of high speed of the flow the quality of fuel confusion with the air on the bounded length considerably deteriorates and the completeness of combustion declines. The remarks of estimates demonstrate that for this reason the application of HRE is bounded evidently with the Mach numbers of flight that doesn't exceed 11-12. At the same time the thermodynamic estimates demonstrate the considerable reserve on the specific characteristics. This reserve can partly be realized by the reconstruction of the structure of the current using MHD-interaction.

http://icm.krasn.ru/refextra.php?id=2342,
Полный текст

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Derevyanko, V.A.; Деревянко, Валерий Александрович; Mierau, A.N.; Васильев, Евгений Николаевич
   В3
   M66

    Numerical Simulation the Periodic Operating Regime of HRE with MHD Control
[Text]. - Electronic text data (73 Kb)
. - Режим доступа: http://icm.krasn.ru/refextra.php?id=1515. - Электрон. версия печ. публикации . - Режим доступа: http://library.krasn.ru/trudy/2000/1515lab23eng_28.pdf (Полный текст) : статья / A.N. Mierau, V.A. Derevyanko, A.N. Vasilyev. - Electronic text data (73 Kb) // X International Conference on the Methods of Aerophysical Research. - Novosibirsk, 2000. - Part III. - p. 143-149

Аннотация: Nowadays both in Russia and abroad active research has been conducted on developing perspective hypersonic aerospace aircraft. The developing of such aircraft would allow to essentially expand aircraft possibilities and to reduce delivery cost of goods to the near-earth orbit. In many countries of the world there are programs of creation of hypersonic aircraft such as: HOTOL in Great Britain, NASP in USA, HERMES in France. One of key while conducting these projects is the creation of a hypersonic ramjet engine having necessary propulsive, mass and dimensional characteristics with all altitude range and flight velocities of an aircraft. The basic difficulties, in development of such engine types are caused by substantial of deterioration of quality of fuel mixture with an oxidant under supersonic flow velocities in the combustion chamber, which results in decrease of an engine efficiency and deterioration of its propulsion. To increase the efficiency of HRE with the supersonic flow velocity in the combustion chamber the authors offered MHD control of gas flow in the channel HRE based on creation in a stream of local plasma areas with temperature 104 K interacting with an external magnetic field [1], [2]. The work presents investigation results for the structure of non-stationary gas-dynamic flow in the channel HRE with MHD - control. It also describes the calculation of propulsion performance characteristics of the given engine on the basis of mathematical simulation of processes, which take place in the channel of an engine. Thee work objective was the research of non-stationary periodic flow with heat application in the tract HRE with MHD - control on the basis of mathematical modeling of processes which take place in the channel of an engine and the calculation of propulsion performance characteristics of an engine. In the work the model HRE including the air intake, MHD - channel and nozzle was considered. The MHD - channel is made of two flat electrodes and sidewalls from a dielectric. The local constant flow heat permitting to create periodical local plasma areas (T- layer) is provided with the systems of initiation the constant magnetic field in the volume of the channel is ensured with an external magnetic system.

http://icm.krasn.ru/refextra.php?id=1515,
Полный текст

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Derevyanko, V.A.; Деревянко, Валерий Александрович; Vasilyev, A.N.; Васильев А.Н.
   В25
   S12

    Mathematical Modeling in Mechanics of Granular Materials
[Текст] : монография / O. Sadovskaya, V. Sadovskii. - Berlin ; Heidelberg : Springer-Verlag, 2012. - 390 p. : il. - (Advanced Structured Materials, ISSN 1869-8433 ; vol. 21), ISSN 1869-8441 (electronic)). - Bibliogr. at the end of the chapters. - ISBN 978-3-642-29052-7. - ISBN 978-3-642-29053-4 (eBook) : Б. ц.
ББК В25

Аннотация: This monograph contains original results in the field of mathematical and numerical modeling of machanical behavior of granular materials and materials with different strengths. It proposes new models helping to define zones of the strain localization. The book shows how to analyze processes of the propogation of elastic and elastic-plastic waves in loosened materials, and constructs models of mixed type, describing the flow of granular materials in the presence of quasi-static deformation zones. In a last part? the book studies a numerical realization of the models on multiprocessor computer systems. The book is intended for scientific researchers, lecturers of universities, postgraduates and senior students, who specialize in the field of the deformable materials mechanics, mathematical modeling and adjacent field of applied and calculus mathematics

Полный текст на сайте издательства


Доп.точки доступа:
Sadovskii, V.M.; Садовский, Владимир Михайлович; Садовская, Оксана Викторовна
Экземпляры всего: 1
ЗФ (1)
Свободны: ЗФ (1)

    Instability of the joint flow of liquid film and co-current gas flow: theory and experiment
[Text] : статья / V. B. Bekezhanova, O. Kabov // Book of abstracts Sixth Int. conf. «Two-Phase Systems for Ground and Space Applications». - 2011. - p. 46



Доп.точки доступа:
Kabov, O.; Бекежанова, Виктория Бахытовна

    Convective instability of Marangoni-Poiseuille flow under a longitudinal temperature gradient
[Text] : статья / V.B. Bekezhanova // Journal of Applied Mechanics and Technical Physics. - 2011. - Vol. 52, Iss. 1. - p. 74-81DOI 10.1134/S0021894411010111 . -

Аннотация: An exact solution is obtained for the problem of steady flow in a system of two horizontal layers of immiscible fluids with a common interface. The stability of the flow is studied by a linearization method. It is shown that the occurrence of instabilities is due to the different governing parameters of the fluids (thickness, heating conditions, viscous and thermal conductivity of the fluids). It is found that under constant gravity conditions, the perturbations are monotonic, and in zero gravity, oscillatory thermocapillary instability occurs.

Полный текст на сайте правообладателя


Доп.точки доступа:
Бекежанова, Виктория Бахытовна

    Group properties and exact solutions of equations for vibrational convection of a binary mixture
[Текст] : статья / I.I. Ryzhkov // Lournal of Applied Mechanics and Technical Physics. - 2011. - Vol. 52, Iss. 4. - p. 560-570DOI 10.1134/S0021894411040080 . -

Аннотация: A model of vibrational convection of a binary mixture with the thermodiffusion effect is considered. The symmetries of model equations are found, depending on the values of physical parameters. A partially invariant solution, which describes separation of the binary mixture in a thermodiffusion column, is constructed and studied. The influence of streamwise vibrations on the flow regime and separation of the mixture is investigated.

Полный текст на сайте правообладателя


Доп.точки доступа:
Stepanova, I.V.; Степанова, Ирина Владимировна; Рыжков, Илья Игоревич

    Features of the interaction of interplanetary coronal mass ejections/magnetic clouds with the Earth's magnetosphere
/ C. J. Farrugia [et al.] // J. Atmos. Sol.-Terr. Phys. - 2013. - Vol. 99. - P14-26, DOI 10.1016/j.jastp.2012.11.014. - Cited References: 53. - C.J.F. is supported by NASA Grant NNX10AQ29G and NSF Grant AGS-1140211. N.V.E. acknowledges support from Austrian Science Fund Project I193-N16 and RFBR Grant no 12-05-00152-a. N.L. acknowledges support from NSF Grant AGS-1140211. Work at LANL was conducted under the auspices of the U.S. Department of Energy with partial support from NASA and NSF. . - 13. - ISSN 1364-6826
РУБ Geochemistry & Geophysics + Meteorology & Atmospheric Sciences

Аннотация: The interaction of interplanetary coronal mass ejections (ICMEs) and magnetic clouds (MCs) with the Earth's magnetosphere exhibits various interesting features principally due to interplanetary parameters which change slowly and reach extreme values of long duration. These, in turn, allow us to explore the geomagnetic response to continued and extreme driving of the magnetosphere. In this paper we shall discuss elements of the following: (i) anomalous features of the flow in the terrestrial magnetosheath during ICME/MC passage and (ii) large geomagnetic disturbances when total or partial mergers of ICMEs/MCs pass Earth. In (i) we emphasize two roles played by the upstream Alfven Mach number in solar wind-magnetosphere interactions: (i) It gives rise to wide plasma depletion layers. (ii) It enhances the magnetosheath flow speed on draped magnetic field lines. (By plasma depletion layer we mean a magnetosheath region adjacent to the magnetopause where magnetic forces dominate over hydrodynamic forces.) In (ii) we stress that the ICME mergers elicit geoeffects over and above those of the individual members. In addition, features of the non-linear behavior of the magnetosphere manifest themselves. (C) 2012 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Farrugia, C.J.; Erkaev, N.V.; Еркаев, Николай Васильевич; Jordanova, V.K.; Lugaz, N.; Sandholt, P.E.; Muhlbachler, S.; Torbert, R.B.

    Liquid film and gas flow motion in a microchannel with evaporation
/ V.V. Kuznetsov, V.K. Andreev // Thermophys. Aeromechanics. - 2013. - Vol. 20, Is. 1. - P17-28. - Cited References: 7. - The work was financially supported by the Russian Foundation for Basic Research (Grant No. 10-01-00007), Federal Target Program "Scientific and Scientific-Pedagogical Personnel of Innovative Russia" (State Contract 14.740.11.0355) and Program of Fundamental Research of OEM RAS No. 2.13.2. . - 12. - ISSN 0869-8643
РУБ Thermodynamics + Mechanics
Рубрики:
FALLING FILM
Кл.слова (ненормированные):
microchannel -- evaporation -- exact solutions -- heat transfer

Аннотация: The problem of stabilized combined motion of the gas flow and liquid film in a microchannel under the action of local heating with consideration of evaporation processes was set in selected variables. The exact solutions to the linearized problem were derived. The analytical formulas for calculation of the film thickness stabilized below the heater and the total rate of liquid evaporation were obtained. The technique of approximate calculation of total heat transfer is shown. Exemplary calculations are presented.

Полный текст


Доп.точки доступа:
Kuznetsov, V.V.; Andreev, V.K.; Андреев, Виктор Константинович

    Stability of non-isothermal fluids (Review)
/ V.K. Andreev, V.B. Bekezhanova // J. Appl. Mech. Tech. Phys. - 2013. - Vol. 54, Is. 2. - P171-184, DOI 10.1134/S0021894413020016. - Cited References: 157. - This work was supported by Russian Foundation for Basic Research (Grant No. 11-01-00283) and the Integration Project of SB RAS No. 38. . - 14. - ISSN 0021-8944
РУБ Mechanics + Physics, Applied

Аннотация: This paper gives a review of studies of flow stability for viscous heat-conducting fluids.


Доп.точки доступа:
Andreev, V.K.; Андреев, Виктор Константинович; Bekezhanova, V.B.; Бекежанова, Виктория Бахытовна

    Conditions at the magnetopause of Saturn and implications for the solar wind interaction
[Text] : статья / M.Desroche [et al.] // J. Geophys. Res-Space Phys. - 2013. - Vol. 118, Is. 6. - P3087-3095, DOI 10.1002/jgra.50294. - Cited References: 43. - The authors thank Chris Arridge for initially suggesting this project. The authors are thankful to Adam Masters, Bob Ergun, Jack Gosling, Martin Goldman, and Dmitri Uzdensky for helpful discussions and guidance. This work was supported by NASA's NESSF program. N.V. Erkaev acknowledges support by the RFBR grant No 12-05-00152-a. . - 9. - ISSN 2169-9380
РУБ Astronomy & Astrophysics

Аннотация: Using idealized models of the magnetosheath and magnetospheric magnetic fields, plasma densities, and plasma flow, we test for the steady state viability of processes mediating the interaction between the solar wind and the magnetosphere of Saturn. The magnetopause is modeled as an asymmetric paraboloid with a standoff distance of approximate to 25R(S). We test where on the magnetopause surface largescale reconnection may be affected by either a shear flow or diamagnetic drift due to a pressure gradient across the magnetopause boundary. We also test for the onset of the KelvinHelmholtz instability. We find that, for the solar wind and magnetosphere states considered, reconnection is inhibited on the dawn flank due to the large shear flows in this region. Additionally, most of the dawn and dusk equatorial region of the magnetopause is KelvinHelmholtz unstable, due to the presence of the dense magnetospheric plasma sheet and weak magnetic fields on either side of the magnetopause. This study is a followup to a previously published study of the solar wind interaction with Jupiter's magnetosphere.


Доп.точки доступа:
Desroche, M.; Bagenal, F.; Delamere, P.A.; Erkaev, N.V.; Еркаев, Николай Васильевич; NASA's NESSF program; RFBR [12-05-00152-a]

    Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction
/ M. Desroche [et al.] // J. Geophys. Res-Space Phys. - 2012. - Vol. 117. - Ст. A07202, DOI 10.1029/2012JA017621. - Cited References: 50. - The authors thank Chris Arridge for initially suggesting this project. The authors are thankful to Adam Masters, Bob Ergun, Jack Gosling, Martin Goldman, and Dmitri Uzdensky for helpful discussions and guidance. This work was supported by NASA's NESSF program and JUNO mission. . - ISSN 0148-0227
РУБ Astronomy & Astrophysics

Аннотация: Using idealized models of the magnetosheath and magnetosphere magnetic fields, plasma densities, and plasma flow, we test for the steady state viability of processes mediating the interaction between the solar wind and the Jovian magnetosphere. The magnetopause is modeled as an asymmetric paraboloid with variable asymmetry. The subsolar standoff of the magnetopause has been shown to exhibit a bimodal probability distribution (Joy et al., 2002). Only the expanded magnetopause is considered, with a standoff of similar to 90 R-J. We test where on the magnetopause surface large-scale reconnection may be affected by either a shear flow or diamagnetic drift due to a pressure gradient across the magnetopause boundary. We also test for the onset of the Kelvin-Helmholtz instability. We find that reconnection is inhibited on the dawn flank due to the large shear flows in this region, regardless of magnetopause shape or interplanetary magnetic field orientation. The presence of a high energy plasma population in the magnetosphere may inhibit reconnection over much of the magnetopause area, except when the fields are antiparallel. Additionally, most of the dawn flank of the magnetopause is Kelvin-Helmholtz unstable, regardless of magnetopause asymmetry; and the dusk flank tailward of the planet is Kelvin-Helmholtz unstable when the magnetopause is highly oblate.


Доп.точки доступа:
Desroche, M.; Bagenal, F.; Delamere, P.A.; Erkaev, N.V.; Еркаев, Николай Васильевич

    Accelerated magnetosheath flows caused by IMF draping: Dependence on latitude
/ N. V. Erkaev [et al.] // Geophys. Res. Lett. - 2012. - Vol. 39. - Ст. L01103, DOI 10.1029/2011GL050209. - Cited References: 16. - This work was done while NVE was on a research visit to the Space Science Center of UNH. This work is supported by RFBR grant N 09-05-91000-ANF_a, and also by the Austrian "Fonds zur Forderung der wissenschaftlichen Forschung" under Project I 193-N16 and the "Verwaltungsstelle fur Auslandsbeziehungen" of the Austrian Academy of Sciences. Work by CJF was supported by NASA grants NNX10AQ29G and NNX08AD11G. . - ISSN 0094-8276
РУБ Geosciences, Multidisciplinary

Аннотация: In previous work we used a semi-analytical treatment to describe accelerated magnetosheath flows caused by the draping of interplanetary magnetic field (IMF) lines around the magnetosphere. Here, we use the same approach, i.e., modeling the magnetic field lines as elastic strings, to examine how the magnetic tension force, one of the two agents responsible for producing these flows, varies along field lines away from the equatorial plane. The bend in the field line caused by the draping mechanism propagates as two oppositely-directed waves to higher latitudes. For a due northward IMF - the case we consider here - these propagate symmetrically north/south of the equatorial plane. As a result, a two-peaked latitude velocity profile develops as we go further downtail and the velocity peaks migrate along the magnetic field line to higher latitudes. We examine this velocity-profile for two Alfven Mach numbers (M-A = 8 and 3), representative of conditions in the solar wind at 1 AU ("normal" solar wind and solar transients). Qualitatively, the picture is the same but quantitatively there are important differences: (i) the flows reach higher values for the lower M-A (maximum V/V-SW = 1.6) than for the higher M-A (V/V-SW = 1.3); (ii) asymptotic values are reached farther downstream of the dawn-dusk terminator for the lower M-A (similar to-50 R-E vs -15 R-E); (iii) For the lower M-A the highest speeds are reached away from the equatorial plane. We predict two channels of fast magnetosheath flow next to the magnetopause at off-equatorial latitudes that exceed the solar wind speed. Citation: Erkaev, N. V., C. J. Farrugia, A. V. Mezentsev, R. B. Torbert, and H. K. Biernat (2012), Accelerated magnetosheath flows caused by IMF draping: Dependence on latitude, Geophys. Res. Lett., 39, L01103, doi:10.1029/2011GL050209.

Полный текст


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Farrugia, C.J.; Mezentsev, A.V.; Torbert, R.B.; Biernat, H.K.

    Numerical simulation of supersonic flows in a channel
/ V.V. Shaidurov, G.I. Shchepanovskaya, V.M. Yakubovich // Russ. J. Numer. Anal. Math. Model. - 2012. - Vol. 27, Is. 6. - pp. 585-601, DOI 10.1515/rnam-2012-0034. - Cited References: 18. - The work was supported by the Russian Foundation for Basic Research (11-01-00224) and by the TRISTAM International project. . - ISSN 0927-6467
РУБ Engineering, Multidisciplinary + Mathematics, Applied

Аннотация: An algorithm for numerical solution of Navier-Stokes equations for two-dimensional motion of a viscous heat-conducting gas is proposed in the paper. The discretization of the equations is performed by a combination of the method of trajectories for the substantive derivative and the finite element method with piecewise-bilinear basis functions for other summands. Results of numerical study of the supersonic flow structure are presented for a flat channel in its step expansion zone for a wide range of Mach and Reynolds numbers. Velocity and pressure fields are investigated, the vortex structure of the circulation flow is studied in the domain after the step.


Доп.точки доступа:
Shaidurov, V.V.; Шайдуров, Владимир Викторович; Shchepanovskaya, G.I.; Щепановская, Галина Ивановна; Yakubovich, M.V.; Якубович, Максим Викторович

    On validation of the SIgMA.CA pedestrian dynamics model with bottleneck flow
/ E.Kirik, T.Vitova // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). - 2012. - Vol. 7495 LNCS: 10th International Conference on Cellular Automata for Research and Industry, ACRI 2012 (24 September 2012 through 27 September 2012, Santorini Island. - pp. 719-727, DOI 10.1007/978-3-642-33350-7-74 . -
Аннотация: In this paper a connection of a width of a bottleneck and unidirectional virtual people flow by the SIgMA.CA pedestrian movement model (stochastic Cellular Automata model) is investigated. Specific and full flow rates for different model parameters, initial densities, and bottleneck width are presented and discussed. В© 2012 Springer-Verlag Berlin Heidelberg.

Scopus


Доп.точки доступа:
Kirik, E.; Кирик, Екатерина Сергеевна; Vitova, T.

    Simulation of current layer dynamics in the magnetogasdynamic interaction with an argon flow
[Text] / E.N. Vasil'ev, D.A. Nesterov // Comput. Math. Math. Phys. - 2010. - Vol. 50, Is. 11. - pp. 1851-1858, DOI 10.1134/S0965542510110096. - Cited References: 9 . - ISSN 0965-5425
РУБ Mathematics, Applied + Physics, Mathematical

Кл.слова (ненормированные):
numerical simulation -- current layer -- MHD interaction -- Rayleigh-Taylor instability -- Maxwell's equations -- MacCormack method

Аннотация: A nonstationary three-dimensional magnetohydrodynamic (MHD) model is used to numerically simulate the formation of a current layer interacting with a transverse magnetic field in a supersonic argon flow. The structural features of the current layer and the characteristics of the process are analyzed at various intensities of the MHD interaction. The problem is solved using the MacCormack method with splitting in spatial coordinates and flux-corrected transport.


Доп.точки доступа:
Vasil'ev, E.N.; Васильев, Евгений Николаевич; Nesterov, D.A.; Нестеров Д.А.

    Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at X =-12 Re
[Text] / C.J. Farrugia [et al.] // J. Geophys. Res-Space Phys. - 2010. - Vol. 115. - Ст. A08227, DOI 10.1029/2009JA015128. - Cited References: 34. - The authors would like to thank David Burgess for helpful discussions. Part of this work was done when NVE was on a research visit to the Space Science Center of the University of New Hampshire, USA. This work is supported by NASA grants NNX08AD11G and NNG06GD41G, and also by RFBR grants 07-05-00135, 09-05-91000-ANF_a and by Program 16 of RAS. R. P. Lin has been supported in part by NASA grant NNX08AE34G at UC Berkeley, and the WCU grant (R31-10016) funded by the Korean Ministry of Education, Science and Technology. We thank D. J. McComas and H. J. Singer for the ACE plasma data and GOES magnetic field data, respectively, obtained through NASA cdaweb site. . - ISSN 0148-0227
РУБ Astronomy & Astrophysics

Аннотация: While there are many approximations describing the flow of the solar wind past the magnetosphere in the magnetosheath, the case of perfectly aligned (parallel or antiparallel) interplanetary magnetic field (IMF) and solar wind flow vectors can be treated exactly in a magnetohydrodynamic (MHD) approach. In this work we examine a case of nearly-opposed (to within 15) interplanetary field and flow vectors, which occurred on October 24-25, 2001 during passage of the last interplanetary coronal mass ejection in an ejecta merger. Interplanetary data are from the ACE spacecraft. Simultaneously Wind was crossing the near-Earth (X similar to -13 Re) geomagnetic tail and subsequently made an approximately 5-hour-long magnetosheath crossing close to the ecliptic plane (Z = -0.7 Re). Geomagnetic activity was returning steadily to quiet, "ground" conditions. We first compare the predictions of the Spreiter and Rizzi theory with the Wind magnetosheath observations and find fair agreement, in particular as regards the proportionality of the magnetic field strength and the product of the plasma density and bulk speed. We then carry out a small-perturbation analysis of the Spreiter and Rizzi solution to account for the small IMF components perpendicular to the flow vector. The resulting expression is compared to the time series of the observations and satisfactory agreement is obtained. We also present and discuss observations in the dawnside boundary layer of pulsed, high-speed (v similar to 600 km/s) flows exceeding the solar wind flow speeds. We examine various generating mechanisms and suggest that the most likely cause is a wave of frequency 3.2 mHz excited at the inner edge of the boundary layer by the Kelvin-Helmholtz instability.


Доп.точки доступа:
Farrugia, C.J.; Erkaev, N.V.; Еркаев, Николай Васильевич; Torbert, R.B.; Biernat, H.K.; Gratton, F.T.; Szabo, A.; Kucharek, H.; Matsui, H.; Lin, R.P.; Ogilvie, K.W.; Lepping, R.P.; Smith, C.W.

    Joint unidirectional motion of two viscous heat-conducting fluids in a tube
[Text] / V.K. Andreev // J. Appl. Mech. Tech. Phys. - 2010. - Vol. 51, Is. 4. - pp. 497-509, DOI 10.1007/s10808-010-0066-2. - Cited References: 6. - This work was supported by the Russian Foundation for Basic Research (Grant No. 08-01-00762) and Interdisciplinary Integration Project of the Siberian Division of the Russian Academy of Science No. 65. . - ISSN 0021-8944
РУБ Mechanics + Physics, Applied

Кл.слова (ненормированные):
viscous heat-conducting fluid -- interface -- steady-state flow

Аннотация: This paper studies an invariant solution of the problem of joint motion of two heat-conducting viscous immiscible fluids which have a common interface in a cylindrical tube under an unsteady pressure gradient. The problem reduces to a coupled initial-boundary-value problem for parabolic equations. A priori estimates of velocity and temperature perturbations are obtained. The steady state of the system is determined, and it is proved that if, in one of the fluids, the pressure gradient rapidly approaches zero, the perturbations of all quantities tend to zero. It is shown that if the pressure gradient has a nonzero limit, the solution reaches a steady state. In this case, the velocity field in the limit is the same as in conjugate Poiseuille flow, and the temperature is represented as a polynomial of the fourth order on the radial coordinate.


Доп.точки доступа:
Андреев, Виктор Константинович

    Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices
[Text] / U.V. Amerstorfer [et al.] // Phys. Plasmas. - 2010. - Vol. 17, Is. 7. - Ст. 72901, DOI 10.1063/1.3453705. - Cited References: 26. - This work was supported by the FWF under Project No. P21051-N16 and also by the RFBR under Grant No. 09-05-91000-ANF_a. . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas

Аннотация: Results of two-dimensional nonlinear numerical simulations of the magnetohydrodynamic Kelvin-Helmholtz instability are presented. A boundary layer of a certain width is assumed, which separates the plasma in the upper layer from the plasma in the lower layer. A special focus is given on the influence of a density increase toward the lower layer. The evolution of the Kelvin-Helmholtz instability can be divided into three different phases, namely, a linear growth phase at the beginning, followed by a nonlinear phase with regular structures of the vortices, and finally, a turbulent phase with nonregular structures. The spatial scales of the vortices are about five times the initial width of the boundary layer. The considered configuration is similar to the situation around unmagnetized planets, where the solar wind (upper plasma layer) streams past the ionosphere (lower plasma layer), and thus the plasma density increases toward the planet. The evolving vortices might detach around the terminator of the planet and eventually so-called plasma clouds might be formed, through which ionospheric material can be lost. For the special case of a Venus-like planet, loss rates are estimated, which are of the order of estimated loss rates from observations at Venus. (C) 2010 American Institute of Physics. [doi:10.1063/1.3453705]


Доп.точки доступа:
Amerstorfer, U.V.; Erkaev, N.V.; Еркаев, Николай Васильевич; Taubenschuss, U.; Biernat, H.K.

    The role of magnetic handedness in magnetic cloud propagation
[Text] / U. Taubenschuss [et al.] // Ann. Geophys. - 2010. - Vol. 28, Is. 5. - pp. 1075-1100, DOI 10.5194/angeo-28-1075-2010. - Cited References: 92. - The author appreciates financial support on behalf of the projects 06/9690 from the Austrian Research Community and A3-12T63/2007-1 from the Styrian government. Participation at the ISSS8 was made possible due to the travel fellowship of UCLA. Nikolai Erkaev acknowledges support by RFBR grants Nos. 07-05-00135 and 09-05-91000-ANF. Charles Farrugia received NASA grants NNG06GD41G and NNX08AD11G. Christian Mostl and Ute Amerstorfer work under FWF projects P20145N16 and P21051-N16 of the Austrian Science Foundation, respectively. . - ISSN 0992-7689
РУБ Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: We investigate the propagation of magnetic clouds (MCs) through the inner heliosphere using 2.5-D ideal magnetohydrodynamic (MHD) simulations. A numerical solution is obtained on a spherical grid, either in a meridional plane or in an equatorial plane, by using a Roe-type approximate Riemann solver in the frame of a finite volume approach. The structured background solar wind is simulated for a solar activity minimum phase. In the frame of MC propagation, special emphasis is placed on the role of the initial magnetic handedness of the MC's force-free magnetic field because this parameter strongly influences the efficiency of magnetic reconnection between the MC's magnetic field and the interplanetary magnetic field. Magnetic clouds with an axis oriented perpendicular to the equatorial plane develop into an elliptic shape, and the ellipse drifts into azimuthal direction. A new feature seen in our simulations is an additional tilt of the ellipse with respect to the direction of propagation as a direct consequence of magnetic reconnection. During propagation in a meridional plane, the initial circular cross section develops a concave-outward shape. Depending on the initial handedness, the cloud's magnetic field may reconnect along its backside flanks to the ambient interplanetary magnetic field (IMF), thereby losing magnetic flux to the IMF. Such a process in combination with a structured ambient solar wind has never been analyzed in detail before. Furthermore, we address the topics of force-free magnetic field conservation and the development of equatorward flows ahead of a concave-outward shaped MC. Detailed profiles are presented for the radial evolution of magnetoplasma and geometrical parameters. The principal features seen in our MHD simulations are in good agreement with in-situ measurements performed by spacecraft. The 2.5-D studies presented here may serve as a basis under more simple geometrical conditions to understand more complicated effects seen in 3-D simulations.


Доп.точки доступа:
Taubenschuss, U.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Farrugia, C.J.; Mostl, C.; Amerstorfer, U.V.