Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 6

    Thermovibrational Convection in Microgravity: Preparation of a Parabolic Flight Experiment
[Text] : статья / D. E. Melnikov [et al.] // Microgravity Science and Technology. - 2008. - Vol. 20, Iss. 1. - p. 29-39, DOI 10.1007/s12217-008-9011-x . - ISSN 0938-0108

Аннотация: This work describes the preparation of the future experiments on thermovibrational convection in microgravity during parabolic flights. The experimental setup for observing thermovibrational flows is designed. It consists of a cubic cell with liquid, which is subjected to controlled vibration, and equipment for registering velocity and temperature fields with a help of optical digital interferometry. The question of choosing working liquid and control parameters of the experiment is addressed. A 3D numerical simulation of thermovibrational convection in a cubic cavity is performed for real parabolic flight conditions. The study is aimed at estimating the values of physical quantities that manifest the presence of thermovibrational flows and can be experimentally measured during short microgravity time (20 s).

Полный текст на сайте журнала


Доп.точки доступа:
Melnikov, D.E.; Ryzhkov, I.I.; Рыжков, Илья Игоревич; Mialdun, A.; Shevtsova, V.

    The IVIDIL experiment onboard the ISS: Thermodiffusion in the presence of controlled vibrations
[Text] : статья / V. Shevtsova [et al.] // Comptes Rendus Mécanique. - 2011. - Vol. 339, Iss. 5. - p. 310–317DOI 10.1016/j.crme.2011.03.007 . -

Кл.слова (ненормированные):
Diffusion -- Thermodiffusion -- Soret effect -- Vibrations -- Microgravity -- Experiment -- Interferometry

Аннотация: The IVIDIL (Influence of VIbrations on DIffusion in Liquids) experiment was aimed at utilizing the International Space Station for investigating the effects of vibrations on liquid diffusion and thermodiffusion. The SODI-IVIDIL project of ESA is gathering together European, Canadian and Russian researchers with complementary skills to prepare and carry out the experiment, to process the raw data and perform numerical modeling of the phenomena. The experiment IVIDIL started on the October 5, 2009. In total 55 experimental runs were successfully completed by 20 January, 2010. A general description of the ISS facility related to the diffusion experiments and accessible for European researchers is briefly presented and some details about IVIDIL instrument are given. The scientific interest of this short article is focused on one of the objectives of the experiment: performing precise measurements of diffusion and thermodiffusion coefficients for binary mixtures in the absence of gravity. We demonstrate possibility of the experimental environment and report on the first results related to measurements of mass transport coefficients in the mixture with the negative Soret effect: 10% isopropanol (IPA)–90% water.

Полный текст на сайте правообладателя


Доп.точки доступа:
Shevtsova, V.; Mialdun, A.; Melnikov, D.; Ryzhkov, I.I.; Рыжков, Илья Игоревич; Gaponenko, Y.; Гапоненко, Юрий Анатольевич; Saghir, Z.; Lyubimova, T.; Legros, J.C.

    Contribution to the benchmark for ternary mixtures: Measurement of diffusion and Soret coefficients in 1,2,3,4-tetrahydronaphthalene, isobutylbenzene, and dodecane onboard the ISS
/ O. A. Khlybov, I. I. Ryzhkov, T. P. Lyubimova // Eur. Phys. J. E. - 2015. - Vol. 38, Is. 4, DOI 10.1140/epje/i2015-15029-0 . - ISSN 1292-8941
Аннотация: Abstract: The paper is devoted to processing the data of DCMIX 1 space experiment. In this experiment, the Optical digital interferometry was used to measure the diffusion and Soret coefficients in the ternary mixture of 1,2,3,4-tetrahydronaphthalene, isobutylbenzene and n-dodecane at mass fractions of 0.8/0.1/0.1 and at 25°C. The raw interferometric images were processed to obtain the temporal and spatial evolution of refractive indices for two laser beams of different wavelengths. The method for extracting the diffusion and thermal diffusion coefficients originally developed for optical beam deflection was extended to optical digital interferometry allowing for the spatial variation of refractive index along the diffusion path. The method was validated and applied to processing the data for Soret and diffusion steps in 5 experimental runs. The obtained results for the Soret coefficients and one of the eigenvalues of diffusion matrix showed acceptable agreement within each step. The second eigenvalue was not determined with sufficient accuracy. Graphical abstract: [Figure not available: see fulltext.]. © 2015, EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

Scopus

Держатели документа:
Institute of Continuous Media Mechanics, UB RAS, Koroleva St. 1Perm, Russian Federation
Institute of Computational Modelling, SB RASAkademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ryzhkov, I.I.; Рыжков, Илья Игоревич; Lyubimova, T.P.

    Benchmark values for the Soret, thermodiffusion and molecular diffusion coefficients of the ternary mixture tetralin+isobutylbenzene+n-dodecane with 0.8-0.1-0.1 mass fraction
/ M. M. Bou-Ali [et al.] // Eur. Phys. J. E. - 2015. - Vol. 38, Is. 4, DOI 10.1140/epje/i2015-15030-7 . - ISSN 1292-8941
Аннотация: Abstract: With the aim of providing reliable benchmark values, we have measured the Soret, thermodiffusion and molecular diffusion coefficients for the ternary mixture formed by 1,2,3,4-tetrahydronaphthalene, isobutylbenzene and n-dodecane for a mass fraction of 0.8-0.1-0.1 and at a temperature of 25°C. The experimental techniques used by the six participating laboratories are Optical Digital Interferometry, Taylor Dispersion technique, Open Ended Capillary, Optical Beam Deflection, Thermogravitational technique and Sliding Symmetric Tubes technique in ground conditions and Selectable Optical Diagnostic Instrument (SODI) in microgravity conditions. The measurements obtained in the SODI installation have been analyzed independently by four laboratories. Benchmark values are proposed for the thermodiffusion and Soret coefficients and for the eigenvalues of the diffusion matrix in ground conditions, and for Soret coefficients in microgravity conditions. Graphical abstract: [Figure not available: see fulltext.]. © 2015, EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

Scopus

Держатели документа:
Mechanical and Industrial Manufacturing Department, MGEP Mondragon Goi Eskola Politeknikoa, Loramendi 4 Apdo 23Mondragon, Spain
Dept. of Mechanical and industrial Engineering, Ryerson UniversityToronto, Canada
MRC, EP CP 165/62, Universite libre de Bruxelles (ULB)Brussels, Belgium
Physikalisches Institut, Universitat BayreuthBayreuth, Germany
Institute of Continuous Media Mechanics UB RASPerm, Russian Federation
Institute of Computational Modelling SB RASKrasnoyarsk, Russian Federation

Доп.точки доступа:
Bou-Ali, M.M.; Ahadi, A.; Alonso de Mezquia, D.; Galand, Q.; Gebhardt, M.; Khlybov, O.; Kohler, W.; Larranaga, M.; Legros, J.C.; Lyubimova, T.; Mialdun, A.; Ryzhkov, I.I.; Рыжков, Илья Игоревич; Saghir, M.Z.; Shevtsova, V.; Van Vaerenbergh, S.
004.942
П429

    ПОВЫШЕНИЕ НАДЁЖНОСТИ ЗЕРКАЛЬНЫХ АНТЕНН И ПЛАТ ЭЛЕКТРОННЫХ МОДУЛЕЙ КОСМИЧЕСКИХ АППАРАТОВ
[Текст] : статья / В. В. Двирный [и др.] // Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева. - 2016. - Т. 17, № 3. - С. 562-568 . - ISSN 1816-9724
   Перевод заглавия: IMPROVEMENT OF SPACECRAFT MIRROR ANTENNA AND ELECTRONIC CIRCUIT BOARDS RELIABILITY
УДК

Аннотация: Повышение надёжности зеркальных антенн всё увеличивающихся размеров при более жёстких требова- ниях к отклонению размеров параболоида, а также миниатюризация электронных модулей и уплотнение монтажа на платах, являются актуальными задачами, решение которых связано с высокоточными измерениями при наземной экспериментальной отработке в термобарокамере, где находится объект испытаний. При этом надежность напрямую связана с долговечностью, поскольку вероятность безотказной работы тем выше, чем меньше требуемый срок активного существования, и которая, в свою очередь, зависит от протекающих в конструкциях термопрочностных процессов в условиях орбитального полета. Результаты теоретических расчетов подтверждаются в процессе наземной экспериментальной отработки. Основными параметрами, определяемыми при экспериментальных исследованиях, являются относительные деформации зонтичных антенн или плат в различных точках. Для плат предложен метод нанесения двух взаимно перпендикулярных полос вдоль и поперек с установкой меток по краям, в термовакуумных условиях проведения прецизионных измерений перемещения меток при различных температурах. Затем с помощью микроскопа определяется длина микротрещин, которую можно принять за допустимые деформации. При этом точность измерений должна быть не больше 1/3 длины трещины. Предложенный метод является применением усовершенствованных, широко известных методов хрупких тензочувствительных покрытий. Что касается методов, основанных на применении оптических чувствительных покрытий, и методов голографической интерферометрии, то они, как правило, не позволяют измерить линейные перемещения с требуемой точностью, особенно при большом количестве контролируемых точек. Использование результатов выполненных работ в практике проектирования зеркальных антенн и бортовой радиоэлектронной аппаратуры космического назначения позволит повысить ее надежность за счет уточнения проектных параметров по результатам эксперимента и оптимизации режимов функционирования в процессе эксплуатации.
Improving the reliability of mirror antennas increasing in size when more and more strict requirements to the deviation of the sizes of a paraboloid, and the miniaturization of electronic modules and a seal mounting on circuit boards, are pressing challenges, the solution of which is associated with high precision measurements at ground-based experimental testing chamber, where the test object. The reliability is directly related to durability, which, in turn, depends on flowing in designs thermo-strength processes in the conditions of orbital flight. The theoretical results are confirmed by calculations in the process of ground testing. The main parameters determined during the experimental research are the relative deformation of the umbrella antenna or circuit boards at various points. For PCBs proposed to apply two mutually perpendicular stripes along and across the tabs on the sides and in thermal vacuum conditions to conduct precise measurement of displacement labels at different temperatures. Then at multiple magnifications on the microscope it is necessary to investigate the size of the microcracks, which can take for allowed deflection. Precision of measurements should be at most 1/3 size of the crack. The proposed method is an improvement of known methods of applying brittle coatings testcustomermap. You can also use methods based on the use of sensitive optical coatings and methods of holographic interferometry, which, however, usually not possible to measure the linear movement with the required accuracy, especially when a large number of controlled points. Using the results of work performed in practice, the design of mirror antennas and on-Board electronics for space applications will increase its reliability by reducing design trial and error, optimization of the operation modes in operation.

РИНЦ

Держатели документа:
АО «Информационные спутниковые системы» имени академика М. Ф. Решетнева»
Институт вычислительного моделирования СО РАН
Томский государственный университет систем управления и радиоэлектроники

Доп.точки доступа:
Двирный, В.В.; Dvirniy V.V.; Морозов, Е.А.; Morozov E.A.; Двирный, Г.В.; Dvirniy G.V.; Крушенко, Генрих Гаврилович; Krushenko G.G.; Карабан, В.М.; Karaban V.M.

    Thermodiffusion in Ternary Mixtures of Water/Ethanol/Triethylene Glycol: First Report on the DCMIX3-Experiments Performed on the International Space Station
/ T. Triller [et al.] // Microgravity Sci Technol. - 2018. - P1-14, DOI 10.1007/s12217-018-9598-5 . - ISSN 0938-0108
Аннотация: We report on thermodiffusion experiments conducted on the International Space Station ISS during fall 2016. These experiments are part of the DCMIX (Diffusion and thermodiffusion Coefficients Measurements in ternary Mixtures) project, which aims at establishing a reliable data base of non-isothermal transport coefficients for selected ternary liquid mixtures. The third campaign, DCMIX3, focuses on aqueous systems with water/ethanol/triethylene glycol as an example, where sign changes of the Soret coefficient have already been reported for certain binary subsystems. Investigations have been carried out with the SODI (Selectable Optical Diagnostics Instrument) instrument, a Mach-Zehnder interferometer set up inside the Microgravity Science Glovebox in the Destiny Module of the ISS. Concentration changes within the liquids have been monitored in response to an external temperature gradient using phase-stepping interferometry. The complete data set has been made available in spring 2017. Due to additionally available measurement time, it was possible to collect a complete data set at 30?C and an almost complete data set at 25?C, which significantly exceeds the originally envisaged measurements at a single temperature only. All samples could be measured successfully. The SODI instrument and the DCMIX experiments have proven reliable and robust, allowing to extract meaningful data even in case of unforeseen laser instabilities. First assessments of the data quality have revealed six out of 31 runs with some problems in image contrast and/or phase step stability that will require more sophisticated algorithms. This publication documents all relevant parameters of the conducted experiments and also events that might have an influence on the final results. The compiled information is intended to serve as a starting point for all following data evaluations. © 2018 Springer Science+Business Media B.V., part of Springer Nature

Scopus,
Смотреть статью

Держатели документа:
Physikalisches Institut, Universitat Bayreuth, Bayreuth, Germany
Laboratoire des Fluides Complexes et leurs Reservoirs, UMR-5150, E2S - Univ Pau & Pays Adour / CNRS / TOTAL, 1 Allee du Parc Montaury, Anglet, France
Mechanical and Industrial Manufacturing Department, MGEP Mondragon Goi Eskola Politeknikoa, Mondragon, Spain
ESA-Estec, Noordwijk, Netherlands
Universidad Politecnica de Madrid, Madrid, Spain
MRC, CP165/62, Universite libre de Bruxelles, Av. F.D. Roosevelt, 50, Brussels, Belgium
Department of Quimica Fisica i Inorganica, Universitat Rovira i Virgili, Tarragona, Spain
Institute of Continuous Media Mechanics UB RAS, Perm, Russian Federation
Departamento de Fisica Aplicada I, Facultad de Fisica, Universidad Complutense, Madrid, Spain
Institute of Computational Modelling SB RAS, Federal Research Center KSC SB RAS, Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Triller, T.; Bataller, H.; Bou-Ali, M. M.; Braibanti, M.; Croccolo, F.; Ezquerro, J. M.; Galand, Q.; Gavalda, J.; Lapeira, E.; Laveron-Simavilla, A.; Lyubimova, T.; Mialdun, A.; Zarate, J. M.O.D.; Rodriguez, J.; Ruiz, X.; Ryzhkov, I. I.; Shevtsova, V.; Vaerenbergh, S. V.; Kohler, W.