Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 16

    Shear driven waves in the induced magnetosphere of Mars
[Text] / H. Gunell [et al.] // Plasma Phys. Control. Fusion. - 2008. - Vol. 50, Is. 7. - Ст. 74018, DOI 10.1088/0741-3335/50/7/074018. - Cited References: 27 . - ISSN 0741-3335
РУБ Physics, Fluids & Plasmas + Physics, Nuclear

Аннотация: We present measurements of oscillations in the electron density, ion density and ion velocity in the induced magnetosphere of Mars. The fundamental frequency of the oscillations is a few millihertz, but higher harmonics are present in the spectrum. The oscillations are observed in a region where there is a velocity shear in the plasma flow. The fundamental frequency is in agreement with computational results from an ideal-MHD model. An interpretation based on velocity-shear instabilities is described.


Доп.точки доступа:
Gunell, H.; Amerstorfer, U.V.; Nilsson, H.; Grima, C.; Koepke, M.; Franz, M.; Winningham, J.D.; Frahm, R.A.; Sauvaud, J.A.; Fedorov, A.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Holmstrom, M.; Lundin, R.; Barabash, S.

    Solar wind flow past Venus and its implications for the occurrence of the Kelvin-Helmholtz instability
[Text] / H. K. Biernat [et al.] // Planet Space Sci. - 2007. - Vol. 55, Is. 12. - P1793-1803, DOI 10.1016/j.pss.2007.01.006. - Cited References: 28 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: In this paper, the solar wind flow around Venus is modeled as a nondissipative fluid which obeys the ideal magnetohydrodynamic equations extended for mass loading processes. The mass loading parameter is calculated for four different cases, corresponding to solar minimum and maximum XUV flux and to nominal and low solar wind velocity. We get smooth profiles of the field and plasma parameters in the magnetosheath. Based on the results of this flow model, we investigate the occurrence of the Kelvin-Helmholtz (K-H) instability at the equatorial flanks of the ionopause of Venus. By comparing the instability growth time with the propagation time of the K-H wave, we find that the K-H instability can evolve at the ionopause for all four solar wind conditions. (C) 2007 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич; Amerstorfer, U.V.; Penz, T.; Lichtenegger, H.I.M.

    Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones
[Text] / H. . Lammer [et al.] // Astrobiology. - 2007. - Vol. 7, Is. 1. - P185-207, DOI 10.1089/ast.2006.0128. - Cited References: 104 . - ISSN 1531-1074
РУБ Astronomy & Astrophysics + Biology + Geosciences, Multidisciplinary

Аннотация: Atmospheric erosion Of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wavelengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 mu m band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O+ ion pick up at orbital distances <= 0.2 astronomical units. We have found that, when exposed to intense XUV fluxes, atmospheres with CO2/N-2 mixing ratios lower than 96% will show an increase in exospheric temperatures and expanded thermosphere-exosphere environments. Hence, they suffer stronger atmospheric erosion, which can result in the total loss of several hundred bars even if an exoplanet is protected by a "magnetic shield" with its boundary located at I Earth radius above the surface. Furthermore, our study indicates that magnetic moments of tidally locked Earth-like exoplanets are essential for protecting their expanded upper atmospheres because of intense XUV radiation against CME plasma erosion. Therefore, we suggest that larger and more massive terrestrial-type exoplanets may better protect their atmospheres against CMEs, because the larger cores of such exoplanets would generate stronger magnetic moments and their higher gravitational acceleration would constrain the expansion of their thermosphere-exosphere regions and reduce atmospheric escape.


Доп.точки доступа:
Lammer, H.; Lichtenegger, H.I.M.; Kulikov, Y.N.; Griessmeier, J.M.; Terada, N.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Khodachenko, M.L.; Ribas, I.; Penz, T.; Selsis, F.

    Aspects of solar wind interaction with Mars: comparison of fluid and hybrid simulations
[Text] / N. V. Erkaev [et al.] // Ann. Geophys. - 2007. - Vol. 25, Is. 1. - P145-159. - Cited References: 32 . - ISSN 0992-7689
РУБ Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: Mars has no global intrinsic magnetic field, and consequently the solar wind plasma interacts directly with the planetary ionosphere. The main factors of this interaction are: thermalization of plasma after the bow shock, ion pick-up process, and the magnetic barrier effect, which results in the magnetic field enhancement in the vicinity of the obstacle. Results of ideal magnetohydrodynamic and hybrid simulations are compared in the subsolar magnetosheath region. Good agreement between the models is obtained for the magnetic field and plasma parameters just after the shock front, and also for the magnetic field profiles in the magnetosheath. Both models predict similar positions of the proton stoppage boundary, which is known as the ion composition boundary. This comparison allows one to estimate applicability of magnetohydrodynamics for Mars, and also to check the consistency of the hybrid model with Rankine-Hugoniot conditions at the bow shock. An additional effect existing only in the hybrid model is a diffusive penetration of the magnetic field inside the ionosphere. Collisions between ions and neutrals are analyzed as a possible physical reason for the magnetic diffusion seen in the hybrid simulations.


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Bosswetter, A.; Motschmann, U.; Biernat, H.K.

    Plasma and magnetic field parameters in the vicinity of short-periodic giant exoplanets
[Text] / N. V. Erkaev [et al.] // Astrophys. J. Suppl. Ser. - 2005. - Vol. 157, Is. 2. - P396-401, DOI 10.1086/427904. - Cited References: 48 . - ISSN 0067-0049
РУБ Astronomy & Astrophysics

Аннотация: During the past years, more than 130 giant planets were discovered in extrasolar planetary systems. Because of the fact that the orbital distances are very close to their host stars, these planets are embedded in a dense stellar wind, which can pick up planetary ions. We model the stellar wind interaction of the short-periodic exoplanets OGLE-TR-56b and HD 209458b at their orbital distances of approximate to 0.023 AU and approximate to 0.045 AU, by calculating the Alfven Mach number and the magnetosonic Mach number in the stellar wind plasma flow. We then analyze the different plasma interaction regimes around the planetary obstacles, which appear for different stellar wind parameters. Our study shows that the stellar wind plasma parameters like temperature, interplanetary magnetic field, particle density, and velocity near planetary obstacles at orbital distances closer than 0.1-0.2 AU have conditions such that no bow shocks evolve. Our study shows also that these close-in exoplanets are in a submagnetosonic regime comparable to the magnetospheric plasma interaction of the inner satellites of Jupiter and Saturn. Furthermore, we compare the results achieved for both exoplanets with the Jupiter-class exoplanet HD 28185b at its orbital distance of approximate to 1.03 AU. Finally, we also discuss the behavior of the stellar wind plasma flow close to the planetary obstacles of two highly eccentric gas giants, namely, HD 108147b and HD 162020b. Because of their eccentric orbits, these two exoplanets periodically experience both regimes with and without a bow shock. Finally, we simulate the neutral gas density of HD 209458b with a Monte Carlo model. By using the plasma parameters obtained in our study we calculate the ion production and loss rate of H+ with a test particle model. Our simulations yield H+ loss rates for HD 209458b or similar giant exoplanets in orders of about 10(8)-10(9) g s(-1). These ion loss rates are at least 1 order of magnitude lower than the observed loss rate of evaporating neutral H atoms. Our study indicates, that similar gas giants at larger orbital distances have lower ion loss rates. Thus, the dominating component of particle loss of short-periodic Jupiter-class exoplanets will be neutral hydrogen.


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Penz, T.; Lammer, H.; Lichtenegger, H.I.M.; Biernat, H.K.; Wurz, P.; Griessmeier, J.M.; Weiss, W.W.

    Planetary ENA imaging: Venus and a comparison with Mars
[Text] / H. Gunell [et al.] // Planet Space Sci. - 2005. - Vol. 53, Is. 4. - P433-441, DOI 10.1016/j.pss.2004.07.021. - Cited References: 21 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: We present simulated images of energetic neutral atoms (ENAs) produced in charge exchange collisions between solar wind protons and neutral atoms in the exosphere of Venus, and make a comparison with earlier results for Mars. The images are found to be dominated by two local maxima. One produced by charge exchange collisions in the solar wind, upstream of the bow shock, and the other close to the dayside ionopause. The simulated ENA fluxes at Venus are lower than those obtained in similar simulations of ENA images at Mars at solar minimum conditions, and close to the fluxes at Mars at solar maximum. Our numerical study shows that the ENA flux decreases with an increasing ionopause altitude. The influence of the Venus nighttime hydrogen bulge on the ENA emission is small. (C) 2004 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Gunell, H.; Holmstrom, M.; Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич

    A comparison of magnetohydrodynamic instabilities at the Martian ionopause
[Text] / T. Penz [et al.] ; ed.: O. Witasse // PLANETARY ATMOSPHERES, IONOSPHERES, AND MAGNETOSPHERES. Ser. ADVANCES IN SPACE RESEARCH : ELSEVIER SCIENCE LTD, 2005. - Vol. 36: 35th COSPAR Scientific Assembly (JUL 18-25, 2004, Paris, FRANCE), Is. 11. - P2049-2056, DOI 10.1016/j.asr.2004.11.039. - Cited References: 20 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: It is known from Pioneer Venus measurements that at the Venusian ionopause wave-like structures develop, which can detach in the form of ionospheric plasma clouds. This phenomenon is assumed to occur due to the Kelvin-Helmholtz instability, which can appear in large regions of the Venusian ionopause. Recent studies of Mars Global Surveyor measurements indicate that wave-like structures and plasma clouds also detach from the Martian ionopause. Therefore, these features seem to be common for the solar wind interaction of non-magnetized planets. We study the conditions at the Martian ionopause with respect to the occurrence of several MHD instabilities. The conditions in the magnetosheath are modeled by a semi-analytical MHD simulation that includes mass loading. The ionospheric parameter needed for the model calculations are taken from a global hybrid model. The stability of the Martian ionopause against the Kelvin-Helmholtz, the Rayleigh-Taylor, and the interchange instability is analyzed. Further, we suggest that including the Hall term in the description of the Kelvin-Helmholtz instability gives a current in the planetary boundary layer resulting in a shear flow compared with the ionospheric plasma, which can lead to an unstable boundary layer near the subsolar point. Since the interchange instability depends on the curvature of the magnetic field lines, we additionally study the influence of the strong curvature of the Martian ionopause due to the localized, remnant, crustal magnetism appearing mainly in the southern hemisphere of Mars. (c) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Penz, T.; Arshukova, I.L.; Terada, N.; Shinagawa, H.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Lammer, H.; Witasse, O. \ed.\

    Ion loss on Mars caused by the Kelvin-Helmholtz instability
[Text] / T. Penz [et al.] // Planet Space Sci. - 2004. - Vol. 52, Is. 13. - P1157-1167, DOI 10.1016/j.pss.2004.06.001. - Cited References: 53 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: Mars Global Surveyor detected cold electrons above the Martian ionopause, which can be interpreted as detached ionospheric plasma clouds. Similar observations by the Pioneer Venus Orbiter electron temperature probe showed also extreme spatial irregularities of electrons in the form of plasma clouds on Venus, which were explained by the occurrence of the Kelvin-Helmholtz instability. Therefore, we suggest that the Kelvin-Helmholtz instability may also detach ionospheric plasma clouds on Mars. We investigate the instability growth rate at the Martian ionopause resulting from the flow of the solar wind for the case where the interplanetary magnetic field is oriented normal to the flow direction. Since the velocity shear near the subsolar point is very small, this area is stable with respect to the Kelvin-Helmholtz instability. We found that the highest flow velocities are reached at the equatorial flanks near the terminator plane, while the maximum plasma density in the terminator plane appears at the polar areas. By comparing the instability growth rate with the magnetic barrier formation time, we found that the instability can evolve into a non-linear stage at the whole terminator plane but preferably at the equatorial flanks. Escape rates of O+ ions due to detached plasma clouds in the order of about 2 x 10(23)-3 x 10(24) s(-1) are found. Thus, atmospheric loss caused by the Kelvin-Helmholtz instability should be comparable with other non-thermal loss processes. Further, we discuss our results in view of the expected observations of heavy ion loss rates by ASPERA-3 on board of Mars Express. (C) 2004 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Penz, T.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Lammer, H.; Amerstorfer, U.V.; Gunell, H.; Kallio, E.; Barabash, S.; Orsini, S.; Milillo, A.; Baumjohann, W.

    Loss of hydrogen and oxygen from the upper atmosphere of Venus
[Text] / H. Lammer [et al.] // Planet Space Sci. - 2006. - Vol. 54, Is. 13-14. - P1445-1456, DOI 10.1016/j.pss.2006.04.022. - Cited References: 93 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: Atmospheric escape from the upper atmosphere of Venus is mainly influenced by the loss of hydrogen and oxygen caused by the interaction of solar radiation and particle flux with the unprotected planetary environment. Because one main aim of the ASPERA-4 particle/plasma and VEX-MAG magnetic field experiments on board of ESA's forthcoming Venus Express mission is the investigation of atmospheric erosion processes from the planet's ionosphere-exosphere environment, we study the total loss of hydrogen and oxygen and identified the efficiency of several escape mechanisms involved. For the estimation of pick up loss rates we use a gas dynamic test particle model and obtained average loss rates for H+, and O+ pick up ions of about 1 x 10(25) s(-1) and about 1.6 x 10(25) s(-1), respectively. Further, we estimate ion loss rates due to detached plasma clouds, which were observed by the pioneer Venus orbiter and may be triggered by the Kelvin-Helmholtz instability of about 0.5-1 x 10(25) s(-1). Thermal atmospheric escape processes and atmospheric loss by photo-chemically produced oxygen atoms yield negligible loss rates. Sputtering by incident pick up O+ ions give O atom loss rates in the order of about 6 x 10(24) s(-1). On the other hand, photo-chemically produced hot hydrogen atoms are a very efficient loss mechanism for hydrogen on Venus with a global average total loss rate of about 3.8 x 10(25) s(-1), which is in agreement with Donahue and Hartle [1992. Solar cycle variations in H+ and D+ densities in the Venus ionosphere: implications for escape. Geophys. Res. Lett. 12, 2449-2452] and of the same order but less than the estimated H+ ion outflow on the Venus nightside of about 7.0 x 10(25) s(-1) due to acceleration by an outward electric polarization force related to ionospheric holes by Hartle and Grebowsky [1993. Light ion flow in the nightside ionosphere of Venus. J. Geophys. Res. 98, 7437-7445]. Our study indicates that on Venus, due to its larger mass and size compared to Mars, the most relevant atmospheric escape processes of oxygen involve ions and are caused by the interaction with the solar wind. The obtained results indicate that the ratio between H/O escape to space from the Venusian upper atmosphere is about 4, and is in a much better agreement with the stoichiometrically H/O escape ratio of 2:1, which is not the case on Mars. However, a detailed analysis of the outflow of ions from the Venus upper atmosphere by the ASPERA-4 and VEX-MAG instruments aboard Venus Express will lead to more accurate atmospheric loss estimations and a better understanding of the planet's water inventory. (c) 2006 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Lammer, H.; Lichtenegger, H.I.M.; Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич; Arshukova, I.L.; Kolb, C.; Gunell, H.; Lukyanov, A.; Holmstrom, M.; Barabash, S.; Zhang, T.L.; Baumjohann, W.

    Escape of the martian protoatmosphere and initial water inventory
[Text] / N. V. Erkaev [et al.] // Planet Space Sci. - 2014. - Vol. 98. - P. 106-119, DOI 10.1016/j.pss.2013.09.008. - Cited References: 94. - P. Odert, H. Lammer, K. G. Kislyakova and Yu. N. Kulikov acknowledge support from the Helmholtz Alliance project "Planetary Evolution and Life". E. Dorfi, M. Gudel, K. G. Kislyakova, H. Lammer, A. Stokl and E. A. Dorfi acknowledge the Austrian Science Fund (FWF) for supporting this study via the FWF NFN project S116 "Pathways to Habitability: From Disks to Active Stars, Planets and Life", and the related FWF NFN subprojects, S 116 02-N1 "Hydrodynamics in Young Star-Disk Systems", S116 604-N16 "Radiation & Wind Evolution from T Tauri Phase to ZAMS and Beyond", and S11607-N16 "Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions". M. Leitzinger and P. Odert also acknowledge the support from the FWF project P22950-N16. N. V. Erkaev acknowledges support by the RFBR Grant no 12-05-00152-a. Finally, H. Lammer thanks M. lkoma from the Department of Earth and Planetary Science, of the University of Tokyo, Japan, for discussions related to the accumulation of nebular-based hydrogen envelopes around Mars-mass bodies. Finally the authors thank an anonymous referee for the interesting and important suggestions and recommendations that helped to improve the results of our study. . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: Latest research in planet formation indicates that Mars formed within a few million years (Myr) and remained as a planetary embryo that never grew to a more massive planet. It can also be expected from dynamical models that most of Mars' building blocks consisted of material that formed in orbital locations just beyond the ice line which could have contained similar to 0.1-0.2 wt.% of H2O. By using these constraints, we estimate the nebula-captured and catastrophically outgassed volatile contents during the solidification of Mars' magma ocean and apply a hydrodynamic upper atmosphere model for the study of the soft X-ray and extreme ultraviolet (XUV) driven thermal escape of the martian protoatmosphere during the early active epoch of the young Sun. The amount of gas that has been captured from the protoplanetary disk into the planetary atmosphere is calculated by solving the hydrostatic structure equations in the protoplanetary nebula. Depending on nebular properties such as the dust grain depletion factor, planetesimal accretion rates and luminosities, hydrogen envelopes with masses >= 3 x 10(19) g to <= 6.5 x 10(22) g could have been captured from the nebula around early Mars. Depending on the before mentioned parameters, due to the planets low gravity and a solar XUV flux that was similar to 100 times stronger compared to the present value, our results indicate that early Mars would have lost its nebular captured hydrogen envelope after the nebula gas evaporated, during a fast period of similar to 0.1-7.5 Myr. After the solidification of early Mars' magma ocean, catastrophically outgassed volatiles with the amount of similar to 50-250 bar H2O and similar to 10-55 bar CO2 could have been lost during similar to 0.4-12 Myr, if the impact related energy flux of large planetesimals and small embryos to the planet's surface lasted long enough, that the steam atmosphere could have been prevented from condensing. If this was not the case, then our results suggest that the timescales for H2O condensation and ocean formation may have been shorter compared to the atmosphere evaporation timescale, so that one can speculate that sporadically periods, where some amount of liquid water may have been present on the planet's surface. However, depending on the amount of the outgassed volatiles, because of impacts and the high XUV-driven atmospheric escape rates, such sporadically wet surface conditions may have also not lasted much longer than similar to 0.4-12 Myr. After the loss of the captured hydrogen envelope and outgassed volatiles during the first 100 Myr period of the young Sun, a warmer and probably wetter period may have evolved by a combination of volcanic outgassing and impact delivered volatiles similar to 4.0 +/- 0.2 Gyr ago, when the solar XUV flux decreased to values that have been <10 times that of today's Sun. (C) 2013 Elsevier Ltd. All rights reserved.

Полный текст (доступен только в локальной сети),
WOS

Держатели документа:
ИВМ СО РАН

Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Lammer, H.; Elkins-Tanton, L.T.; Stokl, A.; Odert, P.; Marcq, E.; Dorfi, E.A.; Kislyakova, K.G.; Kulikov, Y.N.; Leitzinger, M.; Gudel, M.; Helmholtz Alliance project "Planetary Evolution and Life"; Austrian Science Fund (FWF); Austrian Science Fund (FWF) via the FWF NFN project [S116]; FWF NFN subprojects [S 116 02-N1, S116 604-N16, S11607-N16]; FWF project [P22950-N16]; RFBR [12-05-00152-a]

    Origin and loss of nebula-captured hydrogen envelopes from 'sub'- to 'super-Earths' in the habitable zone of Sun-like stars
[Text] / H. . Lammer [et al.] // Mon. Not. Roy. Astron. Soc. - 2014. - Vol. 439, Is. 4. - P. 3225-3238, DOI 10.1093/mnras/stu085. - Cited References: 75. - The authors acknowledge the support by the FWF NFN project S11601-N16 'Pathways to Habitability: From Disks to Active Stars, Planets and Life', and the related FWF NFN subprojects, S 116 02-N16 'Hydrodynamics in Young Star-Disk Systems', S116 604-N16 'Radiation & Wind Evolution from T Tauri Phase to ZAMS and Beyond', and S116607-N16 'Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions'. KGK, YNK, HL, and PO thank also the Helmholtz Alliance project 'Planetary Evolution and Life'. ML and PO acknowledge support from the FWF project P22950-N16. NVE acknowledges support by the RFBR grant no. 12-05-00152-a. Finally, the authors thank the International Space Science Institute (ISSI) in Bern, and the ISSI team 'Characterizing stellar-and exoplanetary environments'. . - ISSN 0035-8711. - ISSN 1365-2966
РУБ Astronomy & Astrophysics

Аннотация: We investigate the origin and loss of captured hydrogen envelopes from protoplanets having masses in a range between 'sub-Earth'-like bodies of 0.1 M-circle plus and 'super-Earths' with 5 M-circle plus in the habitable zone at 1 au of a Sun-like G star, assuming that their rocky cores had formed before the nebula gas dissipated. We model the gravitational attraction and accumulation of nebula gas around a planet's core as a function of protoplanetary luminosity during accretion and calculate the resulting surface temperature by solving the hydrostatic structure equations for the protoplanetary nebula. Depending on nebular properties, such as the dust grain depletion factor, planetesimal accretion rates, and resulting luminosities, for planetary bodies of 0.1-1 M-circle plus we obtain hydrogen envelopes with masses between similar to 2.5 x 10(19) and 1.5 x 10(26) g. For 'super-Earths' with masses between 2 and 5 M-circle plus more massive hydrogen envelopes within the mass range of similar to 7.5 x 10(23)-1.5 x 10(28) g can be captured from the nebula. For studying the escape of these accumulated hydrogen-dominated protoatmospheres, we apply a hydrodynamic upper atmosphere model and calculate the loss rates due to the heating by the high soft-X-ray and extreme ultraviolet (XUV) flux of the young Sun/star. The results of our study indicate that under most nebula conditions 'sub-Earth' and Earth-mass planets can lose their captured hydrogen envelopes by thermal escape during the first similar to 100 Myr after the disc dissipated. However, if a nebula has a low dust depletion factor or low accretion rates resulting in low protoplanetary luminosities, it is possible that even protoplanets with Earth-mass cores may keep their hydrogen envelopes during their whole lifetime. In contrast to lower mass protoplanets, more massive 'super-Earths', which can accumulate a huge amount of nebula gas, lose only tiny fractions of their primordial hydrogen envelopes. Our results agree with the fact that Venus, Earth, and Mars are not surrounded by dense hydrogen envelopes, as well as with the recent discoveries of low density 'super-Earths' that most likely could not get rid of their dense protoatmospheres.

Полный текст (доступен только в локальной сети)

Держатели документа:
ИВМ СО РАН

Доп.точки доступа:
Lammer, H.; Stokl, A.; Erkaev, N.V.; Еркаев, Николай Васильевич; Dorfi, E.A.; Odert, P.; Gudel, M.; Kulikov, Y.N.; Kislyakova, K.G.; Leitzinger, M.; FWF NFN [S11601-N16, S 116 02-N16, S116 604-N16, S116607-N16]; FWF [P22950-N16]; RFBR [12-05-00152-a]

    Impact induced surface heating by planetesimals on early Mars
/ T. I. Maindl [et al.] // Astron. Astrophys. - 2015. - Vol. 574, DOI 10.1051/0004-6361/201424256 . - ISSN 0004-6361
Аннотация: Aims. We investigate the influence of impacts of large planetesimals and small planetary embryos on the early Martian surface on the hydrodynamic escape of an early steam atmosphere that is exposed to the high soft X-ray and extreme-ultraviolet (EUV) flux of the young Sun. Methods. Impact statistics in terms of number, masses, velocities, and angles of asteroid impacts onto early Mars are determined via n-body integrations. Based on these statistics, smoothed particle hydrodynamics (SPH) simulations result in estimates of energy transfer into the planetary surface material and the resulting surface heating. For the estimation of the atmospheric escape rates we applied a soft X-ray and EUV absorption model and a 1D upper atmosphere hydrodynamic model to a magma ocean-related catastrophically outgassed steam atmosphere with surface pressure values of 52 bar H2O and 11 bar CO2. Results. The estimated impact rates and energy deposition onto an early Martian surface can account for substantial heating. The energy influx and conversion rate into internal energy is probably sufficient to keep a shallow magma ocean liquid for an extended period of time. Higher surface temperatures keep the outgassed steam atmosphere longer in vapor form and therefore enhance its escape to space within ?0.6 Myr after its formation.

Scopus,
WOS

Держатели документа:
Institute for Computational Modelling, Russian Academy of SciencesKrasnoyarsk 36, Russian Federation

Доп.точки доступа:
Maindl, T.I.; Dvorak, R.; Lammer, H.; Gudel, M.; Schafer, C.; Speith, R.; Odert, P.; Erkaev, N.V.; Еркаев, Николай Васильевич; Kislyakova, K.G.; Pilat-Lohinger, E.

    Origin and Stability of Exomoon Atmospheres: Implications for Habitability
/ H. Lammer [et al.] // Origins of Life and Evolution of Biospheres. - 2014. - Vol. 44, Iss. 3. - P239-260, DOI 10.1007/s11084-014-9377-2 . - ISSN 0169-6149

Кл.слова (ненормированные):
Atmospheric escape -- Exomoons -- Exoplanets -- Habitabilty -- Protoatmospheres -- Young stars

Аннотация: We study the origin and escape of catastrophically outgassed volatiles (H2O, CO2) from exomoons with Earth-like densities and masses of 0.1, 0.5 and 1 M? orbiting an extra-solar gas giant inside the habitable zone of a young active solar-like star. We apply a radiation absorption and hydrodynamic upper atmosphere model to the three studied exomoon cases. We model the escape of hydrogen and dragged dissociation products O and C during the activity saturation phase of the young host star. Because the soft X-ray and EUV radiation of the young host star may be up to ~100 times higher compared to today’s solar value during the first 100 Myr after the system’s origin, an exomoon with a mass < 0.25 M? located in the HZ may not be able to keep an atmosphere because of its low gravity. Depending on the spectral type and XUV activity evolution of the host star, exomoons with masses between ~0.25 and 0.5 M? may evolve to Mars-like habitats. More massive bodies with masses >0.5 M?, however, may evolve to habitats that are a mixture of Mars-like and Earth-analogue habitats, so that life may originate and evolve at the exomoon’s surface.

WOS,
Scopus


Доп.точки доступа:
Lammer, H.; Schiefer, S.-C.; Juvan, I.; Odert, P.; Erkaev, N.V.; Еркаев, Николай Васильевич; Weber, C.; Kislyakova, K.G.; Gudel, M.; Kirchengast, G.; Hanslmeier, A.

    Effect of stellar wind induced magnetic fields on planetary obstacles of non-magnetized hot Jupiters
[Text] / N. V. Erkaev [et al.] // Mon. Not. Roy. Astron. Soc. - 2017. - Vol. 470, Is. 4. - P4330-4336, DOI 10.1093/mnras/stx1471. - Cited References:54. - The authors thank the anonymous referee for their useful comments. HL, PO and NVE acknowledge support from the Austrian Science Fund (FWF) project P25256-N27 'Characterizing Stellar and Exoplanetary Environments via Modeling of Lyman-alpha Transit Observations of Hot Jupiters'. The authors acknowledge the support by the FWF NFN project S11601-N16 'Pathways to Habitability: From Disks to Active Stars, Planets and Life', and the related FWF NFN subprojects, S11604-N16 'Radiation & Wind Evolution from T Tauri Phase to ZAMS and Beyond' (CJ), S11606-N16 'Magnetospheric Electrodynamics of Exoplanets' (MLK) and S11607-N16 'Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme StellarConditions' (KK, HL, NVE). DK, LF and NVE acknowledge also the Austrian Forschungsforderungsgesellschaft FFG project 'TAPAS4CHEOPS' P853993. The authors further acknowledge support by the Russian Foundation of Basic Research grants no. 15-05-00879-a (NVE, AVM) and no. 16-52-14006 (NVE, AVM, IFS). MLK also acknowledges support by FWF projects I2939-N27, P25587-N27, P25640-N27 and the Leverhulme Trust Grant IN-2014-016. . - ISSN 0035-8711. - ISSN 1365-2966
РУБ Astronomy & Astrophysics

Аннотация: We investigate the interaction between the magnetized stellar wind plasma and the partially ionized hydrodynamic hydrogen outflow from the escaping upper atmosphere of non-magnetized or weakly magnetized hot Jupiters. We use the well-studied hot Jupiter HD 209458b as an example for similar exoplanets, assuming a negligible intrinsic magnetic moment. For this planet, the stellar wind plasma interaction forms an obstacle in the planet's upper atmosphere, in which the position of the magnetopause is determined by the condition of pressure balance between the stellar wind and the expanded atmosphere, heated by the stellar extreme ultraviolet radiation. We show that the neutral atmospheric atoms penetrate into the region dominated by the stellar wind, where they are ionized by photoionization and charge exchange, and then mixed with the stellar wind flow. Using a 3D magnetohydrodynamic (MHD) model, we show that an induced magnetic field forms in front of the planetary obstacle, which appears to be much stronger compared to those produced by the solar wind interaction with Venus and Mars. Depending on the stellar wind parameters, because of the induced magnetic field, the planetary obstacle can move up to approximate to 0.5-1 planetary radii closer to the planet. Finally, we discuss how estimations of the intrinsic magnetic moment of hot Jupiters can be inferred by coupling hydrodynamic upper planetary atmosphere and MHD stellar wind interaction models together with UV observations. In particular, we find that HD 209458b should likely have an intrinsic magnetic moment of 10-20 per cent that of Jupiter.

WOS,
Смотреть статью,
Полный текст (доступен только в ЛВС)

Держатели документа:
Inst Computat Modelling SB RAS, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria.
Univ Vienna, Inst Astron, Turkenschanzstr 17, A-1180 Vienna, Austria.
Inst Laser Phys SB RAS, Novosibirsk 630090, Russia.

Доп.точки доступа:
Erkaev, N. V.; Odert, P.; Lammer, H.; Kislyakova, K. G.; Fossati, L.; Mezentsev, A. V.; Johnstone, C. P.; Kubyshkina, D. I.; Shaikhislamov, I. F.; Khodachenko, M. L.; Austrian Science Fund (FWF) [P25256-N27]; FWF NFN [S11601-N16, S11604-N16, S11606-N16, S11607-N16]; Austrian Forschungsforderungsgesellschaft FFG [P853993]; Russian Foundation [15-05-00879-a, 16-52-14006]; FWF [I2939-N27, P25587-N27, P25640-N27]; Leverhulme Trust [IN-2014-016]

    Dynamo models created on the planets under the influence of tidal forces of the satellite and the sun
/ V. A. Kochnev // International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM : International Multidisciplinary Scientific Geoconference, 2017. - Vol. 17: 17th International Multidisciplinary Scientific Geoconference, SGEM 2017 (29 June 2017 through 5 July 2017, ) Conference code: 130800, Is. 62. - P899-906, DOI 10.5593/sgem2017/62/S28.115 . -
Аннотация: It is known that the movement of the liquid core creates electric currents, inducing a main magnetic field of the planet. The liquid core of the high temperature becomes ionized plasma (plasma), which It is quasi-neutral (not neutral) - by definition. One of the major geodynamo questions: what is the source of strength, causing fluid movement in the core of the planet? Many authors have investigated geodynamo: planetary rotation around its axis, the temperature difference and pressure as well as the Coriolis force. Moffatt (1980), at the end of his book, as expressed the problem mentioned above “… For example, it is not yet known that the ultimate source energy is the basic movements of the Earth’s disk Dynamo”. In this study, the role of the driving forces of the liquid core considered tidal forces created axial rotation of the planet and the influence of external objects (the Sun and planets, satellites). The value of the tidal force on the equator of the planet depends on the radius and the period of the axial rotation of the planet, mass, radius and the orbital period of the satellite around the planet. The paper presents the formula and the results of the calculation of tidal forces and forecast the relative values equatorial magnetic fields of the planets all the planets of the solar system. The interpretation of the results illustrated with drawings. The new version of the dynamo It helps to explain the reasons high intensity magnetic Jupiter's field compared to Saturn’s fields, Uranus and Neptune, and much more Earth field intensity compared with fields of Venus, Mercury and Mars. The calculations of the correlation values the magnetic field at the equator: on the model according to the forecast and observations on the planets. Correlation coefficient is 0.997, that indicates a close relationship observed and estimates fields, and this is indirect evidence of the correctness of the adopted model. © SGEM2017 All Rights Reserved.

Scopus,
Смотреть статью

Держатели документа:
Institute of Computational Modelling of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kochnev, V. A.

    Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets
/ P. Odert [et al.] // Icarus. - 2018. - Vol. 307. - P327-346, DOI 10.1016/j.icarus.2017.10.031. - Cited References:136. - PO and HL acknowledge support from the Austrian Science Fund (FWF): P27256-N27. NVE acknowledges RFBR grant No 16-52-14006 ANF_a. AN and NT acknowledge support from the Helmholtz Association (project VH-NG-1017). This work was supported by the FWF NFN project S11601-N16 'Pathways to Habitability: From Disks to Active Stars, Planets and Life' and the related subprojects S11604-N16 and S11607-N16. The authors also acknowledge the International Space Science Institute (ISSI, Bern, Switzerland) and the ISSI team 'The Early Evolution of the Atmospheres of Earth, Venus, and Mars'. We thank the two anonymous referees for helpful comments which significantly improved the paper. . - ISSN 0019-1035. - ISSN 1090-2643
РУБ Astronomy & Astrophysics

Аннотация: Planetary embryos form protoplanets via mutual collisions, which can lead to the development of magma oceans. During their solidification, significant amounts of the mantles' volatile contents may be outgassed. The resulting H2O/CO2 dominated steam atmospheres may be lost efficiently via hydrodynamic escape due to the low gravity of these Moon- to Mars-sized objects and the high stellar EUV luminosities of the young host stars. Protoplanets forming from such degassed building blocks after nebula dissipation could therefore be drier than previously expected. We model the outgassing and subsequent hydrodynamic escape of steam atmospheres from such embryos. The efficient outflow of H drags along heavier species like O, CO2, and noble gases. The full range of possible EUV evolution tracks of a young solar-mass star is taken into account to investigate the atmospheric escape from Mars-sized planetary embryos at different orbital distances. The estimated envelopes are typically lost within a few to a few tens of Myr. Furthermore, we study the influence on protoplanetary evolution, exemplified by Venus. In particular, we investigate different early evolution scenarios and constrain realistic cases by comparing modeled noble gas isotope ratios with present observations. Isotope ratios of Ne and Ar can be reproduced, starting from solar values, under hydrodynamic escape conditions. Solutions can be found for different solar EUV histories, as well as assumptions about the initial atmosphere, assuming either a pure steam atmosphere or a mixture with accreted hydrogen from the protoplanetary nebula. Our results generally favor an early accretion scenario with a small amount of residual hydrogen from the protoplanetary nebula and a low-activity Sun, because in other cases too much CO2 is lost during evolution, which is inconsistent with Venus' present atmosphere. Important issues are likely the time at which the initial steam atmosphere is outgassed and/or the amount of CO2 which may still be delivered at later evolutionary stages. A late accretion scenario can only reproduce present isotope ratios for a highly active young Sun, but then unrealistically massive steam atmospheres (few kbar) would be required. (C) 2017 Elsevier Inc. All rights reserved.

WOS,
Смотреть статью

Держатели документа:
Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria.
Russian Acad Sci, Siberian Branch, Inst Computat Modelling, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
German Aerosp Ctr DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany.
Tech Univ Berlin, Str 17 Juni 135, D-10623 Berlin, Germany.
Univ Vienna, Dept Astrophys, Turkenschanzstr 17, A-1180 Vienna, Austria.
Karl Franzens Univ Graz, IGAM, Inst Phys, Univ Pl 5, A-8010 Graz, Austria.

Доп.точки доступа:
Odert, P.; Lammer, H.; Erkaev, N. V.; Nikolaou, A.; Lichtenegger, H. I. M.; Johnstone, C. P.; Kislyakova, K. G.; Leitzinger, N.; Tosi, N.; Nikolaou, Athanasia; Austrian Science Fund (FWF) [P27256-N27]; RFBR [16-52-14006 ANF_a]; Helmholtz Association [VH-NG-1017]; FWF NFN [S11601-N16, S11604-N16, S11607-N16]