Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 21

    Structures based on graphitized nanotubulenes with a common electrode in a matrix of porous anodic alumina for the purpose of forming electrically switchable membranes
[Text] / M. M. Simunin [et al.] // Tech. Phys. Lett. - 2015. - Vol. 41, Is. 11. - P1047-1050, DOI 10.1134/S1063785015110103. - Cited References:20. - This work was supported financially by the Russian Science Foundation, project no. 15-19-10017. . - ISSN 1063-7850. - ISSN 1090-6533
РУБ Physics, Applied

Аннотация: A structure based on porous anodic alumina with through pores is synthesized. This structure may be of some interest in terms of fabricating electrically switchable membranes. Conducting tubulenes connected to a common input electrode are located in the pores of the structure. It is hypothesized that enhancement of the electric field nonuniformity associated with the indicated structure morphology should help raise the degree of ionic selectivity of the membrane and broaden the range of permissible concentrations of ions in the processed solution. An suggestion regarding the structure of synthesized tubulenes in the context of the problem of suppressing the physical sorption of ions on the pore surface and raising the hydrogen and oxygen reduction potentials relative to those of state-of-the-art field-switchable membranes is also made.

WOS,
Scopus

Держатели документа:
Natl Res Univ Elect Technol MIET, Moscow 124498, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Simunin, M. M.; Khartov, S. V.; Shiverskii, A. V.; Zyryanov, V. Ya.; Fadeev, Y. V.; Фадеев Ю.В.; Voronin, A. S.; Russian Science Foundation [15-19-10017]

    Optimization of photothermal methods for laser hyperthermia of malignant cells using bioconjugates of gold nanoparticles
/ V. S. Gerasimov [et al.] // Colloid J. - 2016. - Vol. 78, Is. 4. - P435-442, DOI 10.1134/S1061933X16040050 . - ISSN 1061-933X
Аннотация: Selective action of laser radiation on membranes of malignant cells has been studied in different regimes using conjugates of gold nanoparticles with oligonucleotides by the example of DNA aptamers. Under the conditions of a contact between a bioconjugate and a cell surface and the development of substantial and rapidly relaxing temperature gradients near a nanoparticle, the membranes of malignant cells alone are efficiently damaged due to the local hyperthermia of a cellular membrane. It has been shown that employment of pulsed instead of continuous wave laser radiation provides the localization of the damaging action, which does not involve healthy cells. © 2016, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Siberian Federal University, Svobodnyi pr. 79, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/44, Krasnoyarsk, Russian Federation
Kirenskii Institute of Physics, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/38, Krasnoyarsk, Russian Federation
Reshetnev State Siberian State Aerospace University, pr. Gazety “Krasnoyarskii rabochii” 31, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Gerasimov, V. S.; Ershov, A. E.; Karpov, S. V.; Polyutov, S. P.; Semina, P. N.

    Theoretical study of electrolyte transport in nanofiltration membranes with constant surface potential/charge density
/ I. I. Ryzhkov, A. V. Minakov // J. Membr. Sci. - 2016. - Vol. 520. - P515-628, DOI 10.1016/j.memsci.2016.08.004 . - ISSN 0376-7388
Аннотация: The pressure–driven electrolyte transport through nanofiltration membrane pores with constant surface potential or charge density is investigated theoretically. Two approaches are employed in the study. The first one is based on one–dimensional Nernst–Planck equation coupled with electroneutrality, zero current, and Donnan equilibrium conditions. This model is extended to account for interfacial effects by using a smooth approximation of step function for the volume charge density. The second approach is based on two–dimensional Nernst–Planck, Poisson, and Navier–Stokes equations, which are solved in a high aspect ratio nanopore connecting two reservoirs with much larger diameter. The modification of equations on the basis of Slotboom transformation is employed to speed up the convergence rate. The distributions of potential, pressure, ion concentrations and fluxes due to convection, diffusion, and migration in the nanopore and reservoirs are discussed and analyzed. It is found that for constant surface charge density, the convective flux of counter–ions in the nanopore is almost completely balanced by the opposite migration flux, while for constant surface potential, the convective flux is balanced by the opposite diffusion and migration fluxes. The co–ions in the nanopore are mainly transported by diffusion. A particular attention is focused on describing the interfacial effects at the nanopore entrance/exit. Detailed comparison between one– and two–dimensional models is performed in terms of rejection, pressure drop, and membrane potential dependence on the surface potential/charge density, volume flux, ion concentration, and pore radius. A good agreement between these models is found when the Debye length is smaller than the pore radius and the surface potential or charge density are sufficiently low. © 2016 Elsevier B.V.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Computational Modelling SB RAS, Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodny 79, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Minakov, A. V.; Рыжков, Илья Игоревич

    Ion-selective membranes based on aluminum oxide fibers
[Text] : abstract / D. V. Lebedev [et al.] // Proceedings of International conference «Ion transport in organic and inorganic membranes». - Krasnodar, 2016. - P170-172



Доп.точки доступа:
Lebedev, D.V.; Shiverskii, A. V.; Simunin, M. M.; Khartov, S. V.; Romashkin, A.V.; Ryzhkov, I.I.; Рыжков, Илья Игоревич

    Preparation and ionic selectivity of carbon-coated alumina nanofiber membranes
/ D. V. Lebedev [et al.] // Pet. Chem. - 2017. - Vol. 57, Is. 4. - P306-317, DOI 10.1134/S096554411704003X. - Cited References:52. - This work was supported by the Russian Science Foundation, grant no. 15-19-10017. Instrumental analysis of the materials was performed in the Shared Equipment Center at the Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy Sciences. . - ISSN 0965-5441. - ISSN 1555-6239
РУБ Chemistry, Organic + Chemistry, Physical + Energy & Fuels + Engineering,

Аннотация: A novel type of ion-selective membranes based on Nafen(TM) alumina nanofibers coated with carbon is proposed. The membranes are produced by filtration of a Nafen nanofiber suspension through a porous support followed by drying and sintering. A thin carbon layer (up to 2 nm) is deposited on the nanofibers by chemical vapor deposition (CVD). Its formation is confirmed by the results of Raman spectroscopy and visually observed in TEM images. According to low temperature nitrogen adsorption experiments, the formation of carbon layer leads to decreasing pore size (the maximum of pore size distribution shifts from 28 to 16 nm) and the corresponding decrease of porosity (from 75 to 62%) and specific surface area (from 146 to 107 m(2)g(-1)). The measurement of membrane potential in an electrochemical cell has shown that the deposition of carbon on the membrane results in high ionic selectivity. In an aqueous KCl solution, the membranes display high anion selectivity with anion and cation transference numbers of 0.94 and 0.06, respectively. The fixed-charge density of membrane has been determined by fitting the experimental data using the Teorell-Meyer-Sievers model. It has been found that the membrane fixed-charge density increases with increasing electrolyte concentration. Possible applications of the membranes produced include nanofiltration, ultrafiltration, and separation of charged species in mixtures. The formation of a conductive carbon layer on the pore surface can be employed for fabricating membranes with switchable ion-transport selectivity.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk, Russia.
Russian Acad Sci, Siberian Branch, Mol Elect Dept, Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia.
Natl Res Univ Elect Technology MIET, Moscow, Russia.
Russian Acad Sci, Siberian Branch, Inst Chem & Chem Technol, Krasnoyarsk, Russia.

Доп.точки доступа:
Lebedev, D.V.; Лебедев Д.В.; Shiverskiy, A. V.; Simunin, M. M.; Solodovnichenko, V.S.; Солодовниченко В.С.; Parfenov, V. A.; Bykanova, V. V.; Khartov, S. V.; Ryzhkov, I.I.; Рыжков, Илья Игоревич; Russian Science Foundation [15-19-10017]

    Finite ion size effects on electrolyte transport in nanofiltration membranes
/ I. I. Ryzhkov, A. V. Minakov // J. Sib. Fed. Univ. Math. Phys. - 2017. - Vol. 10, Is. 2. - P186-198, DOI 10.17516/1997-1397-2017-10-2-186-198 . - ISSN 1997-1397
Аннотация: The pressure–driven electrolyte transport through nanofiltration membrane pores with specified wall potential is investigated theoretically. The finite ion size effect is taken into account by introducing an additional term to electrochemical potential. The two–dimensional Navier–Stokes, Poisson, and modified Nernst–Planck equations are solved numerically in a high aspect ratio nanopore connecting two reservoirs with a larger diameter. The calculations are performed for potassium chloride aqueous solution. In the case of point–like ions, the non–physical rise of counter–ion concentration is observed near the pore wall at large applied voltages. When finite ion size is taken in account, the concentration of counter–ions decreases significantly and saturates to the maximum value. It leads to lower osmotic pressure jump and larger magnitude of potential in the pore. The stronger co–ion depletion observed for finite size ions results in the increase of salt rejection, membrane potential, and required pressure drop. © Siberian Federal University. All rights reserved.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Computational Modelling RAS SB, Academgorodok, 50/44, Krasnoyarsk, Russian Federation
Institute of Engineering Physics and Radio Electronics, Siberian Federal University, Svobodny, 79, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ryzhkov, I. I.; Minakov, A. V.

    Синтез мембран на основе нановолокон оксида алюминия и исследование их ионной селективности
[Текст] : статья / Д. В. Лебедев [и др.] // Мембраны и мембранные технологии. - 2017. - Т. 7, № 2. - С. 86-98, DOI 10.1134/S2218117217020031 . - ISSN 2218-1172

Аннотация: Предложен новый тип керамических мембран с ионной селективностью на основе нановолокон оксида алюминия (NafenTM), покрытых слоем углерода. Синтез мембран осуществляется методом вакуумной фильтрации коллоидного раствора волокон Nafen с последующим термическим отжигом и нанесением углеродного слоя методом химического осаждения из газовой фазы (chemical vapor deposition, CVD). Данные просвечивающей электронной микроскопии и спектроскопии комбинационного рассеяния подтверждают формирование углеродного слоя толщиной до 2 нм на нановолокнах. По данным низкотемпературной адсорбции азота, это приводит к уменьшению размера пор (максимум функции распределения смещается от 28 к 16 нм) и соответственному снижению пористости (с 75 до 62%) и удельной поверхности мембраны (с 146 до 107 м2 г–1). С помощью потенциометрического метода установлено, что нанесение углеродного слоя на мембраны из волокон Nafen придает им выраженные ионоселективные свойства. Измерения в водном растворе KCl показали, что полученные мембраны являются анион-селективными с числами переноса 0.94 для аниона и 0.06 для катиона. Определена плотность фиксированного заряда мембран путем аппроксимации экспериментальных данных моделью Теорелла–Мейера–Сиверса. Показано, что плотность заряда возрастает с увеличением концентрации электролита. Полученные мембраны могут быть применены в области нано- и ультрафильтрации, а также для разделения заряженных компонентов смесей. Нанесение проводящего углеродного слоя на поверхность пор является перспективным для создания мембран с управляемой ионной селективностью.
A novel type of ion-selective membranes based on NafenTM alumina nanofibers covered with carbon is proposed. The membranes are produced by filtration of Nafen nanofiber suspension through a porous support followed by drying and sintering. A thin carbon layer (up to 2 nm) is deposited on the nanofibers with the help of chemical vapor deposition (CVD). Its formation is confirmed by the results of Raman spectroscopy and visually observed in TEM images. According to low temperature nitrogen adsorption experiments, the formation of carbon layer leads to decreasing pore size (the maximum of pore size distribution shifts from 28 to 16 nm) and the corresponding decrease of porosity (from 75 to 62%) and specific surface area (from 146 to 107 m2 g–1). The measurement of membrane potential in an electrochemical cell shows that the deposition of carbon on the membrane results in high ionic selectivity. In an aqueous KCl solution, the membranes display high anion–selectivity with transference numbers 0.94 for anion and 0.06 for cation. The fixed charge density of membrane is determined by fitting the experimental data with the help of Teorell–Meyer–Sievers model. It is found that the density of fixed membrane charge increases with increasing the electrolyte concentration. The potential applications of produced membranes include nano- and ultrafiltration as well as separation of charged species in mixtures. The formation of conductive carbon layer on the pore surface can be employed for producing membranes with switchable ion-transport selectivity. Keywords: alumina nanofiber, membrane, chemical vapor deposition, carbon, membrane potential measurement, ionic permselectivity, Teorell–Meyer–Sievers model

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН, Академгородок 50-44, Красноярск, Россия
Институт химии и химической технологии СО РАН, Академгородок 50-24, Красноярск, Россия
Красноярский научный центр СО РАН, Академгородок 50, Красноярск, Россия
Национальный исследовательский университет “МИЭТ”, Площадь Шокина, 1, Зеленоград, Москва, Россия

Доп.точки доступа:
Лебедев, Д.В.; Шиверский, А.В.; Симунин, М.М.; Солодовниченко, В.С.; Парфенов, В.А.; Быканова, В.В.; Хартов, С.В.; Рыжков, И.И.

    Experimental and modelling study of ionic selectivity in carbon coated alumina nanofiber membranes
/ I. I. Ryzhkov [et al.] // Chemical Engineering Transactions : Italian Association of Chemical Engineering - AIDIC, 2017. - Vol. 60. - P253-258, DOI 10.3303/CET1760043 . -
Аннотация: A novel type of ion-selective membranes, which combine the advantages of ceramic nanofibrous media with good electrical conductivity, is proposed. The membranes are produced from Nafen alumina nanofibers (diameter around 10 nm) by filtration of nanofiber suspension through a porous support followed by drying and sintering. Electrical conductivity is achieved by depositing a thin carbon layer on the nanofibers by CVD. Raman spectroscopy and TEM are used to confirm the carbon structure formation. The average pore size determined by low temperature nitrogen adsorption experiments lies in the range 15-30 nm. Measurements of membrane potential show that the carbon coated membranes acquire high ionic selectivity (transference numbers 0.94 for anion and 0.06 for cation in aqueous KCl). The fixed membrane charge is determined by fitting the experimental data to Teorell-Meyer-Sievers and Space-charge models. © 2017, AIDIC Servizi S.r.l.

Scopus,
Смотреть статью

Держатели документа:
Institute of Computational Modelling SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russian Federation
Molecular Electronics Department KSC SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russian Federation
National Research University of Electronic Technology, MIET, Shokin square 1, Zelenograd, Moscow, Russian Federation
Institute of Chemistry and Chemical Technology SB RAS, Akademgorodok 50-24, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ryzhkov, I. I.; Lebedev, D. V.; Solodovnichenko, V. S.; Shiverskiy, A. V.; Simunin, M. M.; Parfenov, V. A.

    Carbon Coated Alumina Nanofiber Membranes for Selective Ion Transport
/ V. S. Solodovnichenko [et al.] // Adv. Eng. Mater. - 2017. - Vol. 19, Is. 11. - Ст. 1700244, DOI 10.1002/adem.201700244. - Cited References:60. - This work is supported by the Russian Science Foundation, Project 15-19-10017. The physicochemical analysis of materials was carried out on equipment of Krasnoyarsk Scientific Center of Shared Facilities SB RAS. . - ISSN 1438-1656. - ISSN 1527-2648
РУБ Materials Science, Multidisciplinary

Аннотация: The authors propose a novel type of ion-selective membranes, which combine the advantages of ceramic nanofibrous media with good electrical conductivity. The membranes are produced from Nafen alumina nanofibers (diameter around 10nm) by filtration of nanofiber suspension through a porous support followed by drying and sintering. Electrical conductivity is achieved by depositing a thin carbon layer on the nanofibers by chemical vapor deposition (CVD). Raman and FTIR spectroscopy, X-ray fluorescence analysis, and TEM are used to confirm the carbon structure formation. The deposition of carbon leads to decreasing porosity (from 75 to 62%) and specific surface area (from 146 to 107m(2) g(-1)) of membranes, while the pore size distribution maximum shifts from 28 to 16nm. Measurements of membrane potential in an electrochemical cell show that the carbon coated membranes acquire high ionic selectivity (transference numbers 0.94 for anion and 0.06 for cation in aqueous KCl). Fitting the membrane potential data by the Teorell-Meyer-Sievers model shows that the fixed membrane charge increases proportionally with increasing electrolyte concentration. The carbon coated membranes are ideally polarizable for applied voltages from -0.5 to +0.8V. The potential applications of produced membranes include nano- and ultrafiltration, separation of charged species, and switchable ion-transport selectivity.

WOS,
Смотреть статью

Держатели документа:
Inst Computat Modeling SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russia.
Fed Res Ctr KSC SB RAS, Akademgorodok 50, Krasnoyarsk, Russia.
Natl Res Univ Elect Technol MIET, Shokin Sq 1, Moscow, Russia.
Inst Chem & Chem Technol SB RAS, Akademgorodok 50-24, Krasnoyarsk, Russia.

Доп.точки доступа:
Solodovnichenko, Vera S.; Lebedev, Denis V.; Bykanova, Victoria V.; Shiverskiy, Alexey V.; Simunin, Mikhail M.; Parfenov, Vladimir A.; Ryzhkov, Ilya I.; Russian Science Foundation [15-19-10017]

    Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores
/ I. I. Ryzhkov [et al.] // Phys. Rev. Lett. - 2017. - Vol. 119, Is. 22. - Ст. 226001, DOI 10.1103/PhysRevLett.119.226001. - Cited References:31. - This work is supported by the Russian Science Foundation, Project No. 15-19-10017. . - ISSN 0031-9007. - ISSN 1079-7114
РУБ Physics, Multidisciplinary

Аннотация: When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Inst Computat Modelling SB RAS, Fed Res Ctr KSC SB RAS, Akademgorodok 50, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Ryzhkov, I. I.; Lebedev, D. V.; Solodovnichenko, V. S.; Shiverskiy, A. V.; Simunin, M. M.; Russian Science Foundation [15-19-10017]

    On the origin of membrane potential in membranes with polarizable nanopores
/ I. I. Ryzhkov [et al.] // J. Membr. Sci. - 2018. - Vol. 549. - P616-630, DOI 10.1016/j.memsci.2017.11.073. - Cited References:69. - This work is supported the Russian Science Foundation, Project 15-19-10017. The physicochemical analysis of materials was carried out on the equipment of Krasnoyarsk Scientific Center of Shared Facilities SB RAS. . - ISSN 0376-7388. - ISSN 1873-3123
РУБ Engineering, Chemical + Polymer Science

Аннотация: We report a new mechanism for the generation of membrane potential in polarizable nanoporous membranes separating electrolytes with different concentrations. The electric field generated by diffusion of ions with different mobilities induces a non-uniform surface charge, which results in charge separation inside the nanopore. The corresponding Donnan potentials appear at the pore entrance and exit leading to a dramatic enhancement of membrane potential in comparison with an uncharged non-polarizable membrane. At high concentration contrast, the interaction between electric field and uncompensated charge at a low concentration side results in the development of electrokinetic vortices. The theoretical predictions are based on the Space-Charge model, which is extended to nanopores with polarizable conductive surface for the first time. This model is validated against full Navier-Stokes, Nernst-Planck, and Poisson equations, which are solved in a high aspect ratio nanopore connecting two reservoirs. The experimental measurements of membrane potential of dielectric and conductive membranes in KCl and NaCl aqueous solutions confirm the theoretical results. The membranes are prepared from Nafen nanofibers with similar to 10 nm in diameter and modified by depositing a conductive carbon layer. It is shown theoretically that the membrane potential enhancement becomes greater with decreasing the electrolyte concentration and pore radius. A high sensitivity of membrane potential to the ratio of ion diffusion coefficients is demonstrated. The described phenomenon may find applications in precise determination of ion mobilities, electrochemical and bio-sensing, as well as design of nanofluidic and bioelectronic devices.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Fed Res Ctr KSC SB RAS, Inst Computat Modelling SB RAS, Akademgorodok 50-44, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Ryzhkov, Ilya I.; Lebedev, Denis V.; Solodovnichenko, Vera S.; Minakov, Andrey V.; Simunin, Mikhail M.; Russian Science Foundation [15-19-10017]

    Effect of Electric Field on Ion Transport in Nanoporous Membranes with Conductive Surface
/ D. V. Lebedev [et al.] // Pet. Chem. - 2018. - Vol. 58, Is. 6. - P474-481, DOI 10.1134/S0965544118060075. - Cited References:32. - This work was supported by the Russian Science Foundation, project no. 15-19-10017. The instrumental analysis of the materials was conducted at the Center for collective use of the Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences. . - ISSN 0965-5441. - ISSN 1555-6239
РУБ Chemistry, Organic + Chemistry, Physical + Energy & Fuels + Engineering,

Аннотация: The effect of an external electric field on the ionic conductivity and selective properties of ceramic membranes based on alumina nanofibers coated with a conductive carbon layer has been studied. It has been shown that the membranes are ideally polarizable in the polarizing voltage range of -500 to +500 mV and, therefore, can be used for implementing switchable ionic selectivity. Experiments have revealed that the membrane resistance decreases with a change in the applied potential from 0 to +/- 500 mV. It has been shown that the membrane selectivity can be switched from anion to cation by varying the external potential. The surface charge density of the membranes has been determined in terms of the Teorell-Meyer-Sievers model according to the experimental measurements of the membrane potential.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Computat Modeling, Krasnoyarsk 660036, Russia.
St Petersburg State Univ, Inst Chem, St Petersburg 198504, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Lebedev, D. V.; Solodovnichenko, V. S.; Simunin, M. M.; Ryzhkov, I. I.; Russian Science Foundation [15-19-10017]
66.081.6
В 58

    Влияние электрического поля на транспорт ионов в нанопористых мембранах с проводящей поверхностью
[Текст] : статья / Д. В. Лебедев [и др.] // Мембраны и мембранные технологии. - 2018. - Т. 8, № 3. - С. 157-165, DOI 10.1134/S2218117218030070 . - ISSN 2218-1172
   Перевод заглавия: The Influence of Electric Field on The Ion Transport on Nanoporous Membranes with Conductive Surface
УДК

Аннотация: В работе исследуется влияние внешнего электрического поля на ионную проводимость и селективные свойства керамических мембран на основе нановолокон оксида алюминия, покрытых проводящим слоем углерода. Показано, что мембраны являются идеально поляризуемыми в области поляризующих напряжений от –500 до +500 мВ, что позволяет использовать их для реализации управляемой ионной селективности. Экспериментально установлено, что сопротивление мембраны уменьшается при изменении приложенного к ней потенциала от 0 до ±500 мВ. Продемонстрирована возможность изменения селективности мембраны от аниона к катиону в зависимости от внешнего потенциала. На основе экспериментальных измерений мембранного потенциала определена поверхностная плотность заряда мембран с помощью модели Теорелла–Мейера–Сиверса.
In this work, we investigate the influence of external electric field on the ionic conductivity and selectivity of ceramic membranes based on alumina nanofibers covered with conductive carbon layer. It is shown that the membranes are ideally polarizable in the range of voltages from –500 mV to +500 mV, which makes them suitable candidates for realizing switchable ionic selectivity. It is found experimentally that the membrane resistance decreases with increasing the potential applied to the membrane from 0 to ±500 mV. The possibility of changing the membrane selectivity from anion to cation depending on the applied potential is demonstrated. The membrane surface charge density is determined from experimental measurements of membrane potential with the help of Teorell-Meyer-Sievers model. Keywords: ceramic membranes, nanopore, conductive surface, ionic selectivity, ionic conductivity, switchable ion transport

РИНЦ

Держатели документа:
Красноярский научный центр СО РАН
Санкт-Петербургский государственный университет, Институт химии, Университетский проспект, 26, Санкт-Петербург, Петергоф, 198504 Россия
Сибирский федеральный университет

Доп.точки доступа:
Лебедев, Д.В.; Lebedev D.V.; Солодовниченко, В.С.; Solodovnichenko V.S.; Симунин, М.М.; Simunin M.M.; Рыжков, И.И.; Ryzhkov I.I.

    New mechanisms of ion transport in membranes with conductive pore walls: experiment and modelling
[Text] : доклад, тезисы доклада / Ilya Ryzhkov [et al.] // Ion Transport in Organic and Inorganic Membranes : Conference Proceedings. - Краснодар : BestPrint, 2018. - P245-247 . - ISBN 978-5-9906777-8-4


РИНЦ,
Источник статьи

Держатели документа:
?Siberian Federal University, Krasnoyarsk, Russia?
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia
Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia

Доп.точки доступа:
Ryzhkov, Ilya; Lebedev, Denis; Vyatkin, Anton; Simunin, Mikhail; International Conference "Ion Transport in Organic and Inorganic Membranes"(2018 ; 21.05 - 26.05 ; Krasnodar)
Нет сведений об экземплярах (Источник в БД не найден)

    Experimental study of membrane potential in membranes with conductive polarizable nanopores
[Text] : доклад, тезисы доклада / Anton Vyatkin [et al.] // Ion Transport in Organic and Inorganic Membranes : Conference Proceedings. - Краснодар : BestPrint, 2018. - P319-320 . - ISBN 978-5-9906777-8-4


РИНЦ,
Источник статьи

Держатели документа:
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia?
Siberian Federal University, Krasnoyarsk, Russia,

Доп.точки доступа:
Vyatkin, Anton; Kucheryavyj, Valerij; Simunin, Mikhail; Ryzhkov, Ilya; International Conference "Ion Transport in Organic and Inorganic Membranes"(2018 ; 21.05 - 26.05 ; Krasnodar)
Нет сведений об экземплярах (Источник в БД не найден)

    Coupled thermal analysis of carbon layers deposited on alumina nanofibres
/ V. S. Solodovnichenko [et al.] // Thermochim. Acta. - 2019. - Vol. 675. - P164-171, DOI 10.1016/j.tca.2019.02.012. - Cited References:50. - The work is supported by the Russian Foundation for Basic Research Grant no. 18-29-19078. The physicochemical analysis of materials was carried out on equipment of Krasnoyarsk Scientific Center of Shared Facilities SB RAS. . - ISSN 0040-6031. - ISSN 1872-762X
РУБ Thermodynamics + Chemistry, Analytical + Chemistry, Physical

Аннотация: Catalyst-free chemical vapor deposition is used to form thin (1-2 nm) carbon layers on the surface of alumina nanofibers resulting in carbon-alumina nanocomposites. Thermal analysis, X-ray fluorescent microanalysis, Raman spectroscopy, and electrical resistance measurements of these composites show that increasing of synthesis time not only increases the amount of carbon on alumina surface, but also the ordering and density of the carbon layers. Nitrogen adsorption data reveal the decrease of total pore volume with increasing the synthesis time. The obtained composite material could be employed for the preparation of ion-selective membranes with switchable ion transport, electroconductive ceramics, and electrochemical sensors.

WOS,
Смотреть статью,
Scopus,
РИНЦ

Держатели документа:
Fed Res Ctr KSC SB RAS, Inst Computat Modelling SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russia.
Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia.
St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia.
Fed Res Ctr KSC SB RAS, Akademgorodok 50, Krasnoyarsk, Russia.
Natl Res Univ Elect Technol, MIST, Shokin Sq 1, Moscow, Russia.
Fed Res Ctr KSC SB RAS, Inst Chem & Chem Technol, Akademgorodok 50-24, Krasnoyarsk, Russia.

Доп.точки доступа:
Solodovnichenko, Vera S.; Simunin, Mikhail M.; Lebedev, Denis, V; Voronin, Anton S.; Emelianov, Aleksei, V; Mikhlin, Yuri L.; Parfenov, Vladimir A.; Ryzhkov, Ilya I.; Russian Foundation for Basic Research Grant [18-29-19078]

    Theory of Ion and Water Transport in Electron-Conducting Membrane Pores with pH-Dependent Chemical Charge
/ L. Zhang, P. M. Biesheuvel, I. I. Ryzhkov // Phys. Rev. Appl. - 2019. - Vol. 12, Is. 1. - Ст. 014039, DOI 10.1103/PhysRevApplied.12.014039. - Cited References:49. - This work is performed in the cooperation framework of Wetsus, European Centre of Excellence for Sustainable Water Technology. Wetsus is co-funded by the Dutch Ministry of Economic Affairs and Ministry of Infrastructure and Environment, the Province of Fryslan, and the Northern Netherlands Provinces. L.Z. and P.M.B. thank the participants of the research theme Advanced Water Treatment for fruitful discussions and financial support. I.R. acknowledges the support of Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science in the frame of research project 18-48-242011 "Mathematical modelling of synthesis and ionic transport properties of conductive nanoporous membranes." I.R. also acknowledges the Dutch Science Foundation NWO for a Visitors Travel Grant No. 040.11.694. . - ISSN 2331-7019
РУБ Physics, Applied

Аннотация: In this work, we develop an extended uniform potential (UP) model for a membrane nanopore by including two different charging mechanisms of the pore walls, namely by electronic charge and by chemical charge. These two charging mechanisms generally occur in polymeric membranes with conducting agents, or membranes made of conducting materials like carbon nanotubes with surface ionizable groups. The electronic charge redistributes along the pore in response to the gradient of electric potential in the pore, while the chemical charge depends on the local pH via a Langmuir-type isotherm. The extended UP model shows good agreement with experimental data for membrane potential measured at the zero-current condition. When both types of charge are present, the ratio of the electronic charge to the chemical charge can be characterized by the dimensionless number of surface groups and the dimensionless capacitance of the dielectric Stern layer. The performance of the membrane pore in converting osmotic energy from a salt concentration difference into electrical power can be improved by tuning the electronic charge.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Wetsus, European Ctr Excellence Sustainable Water Technol, Oostergoweg 9, NL-8911 MA Leeuwarden, Netherlands.
Fed Res Ctr KSC SB RAS, Inst Computat Modelling SB RAS, Akademgorodok 50-44, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Zhang, L.; Biesheuvel, P. M.; Ryzhkov, I. I.; Dutch Ministry of Economic Affairs and Ministry of Infrastructure and Environment; Province of Fryslan; Northern Netherlands Provinces; Russian Foundation for Basic Research, Government of Krasnoyarsk Territory; Krasnoyarsk Regional Fund of Science [18-48-242011]; Dutch Science Foundation NWO [040.11.694]

    Modelling of electrochemically switchable ion transport in nanoporous membranes with conductive surface
/ I. I. Ryzhkov, A. S. Vyatkin, M. I. Medvedeva // J. Sib. Fed. Univ. Math. Phys. - 2019. - Vol. 12, Is. 5. - P579-589, DOI 10.17516/1997-1397-2019-12-5-579-589 . - ISSN 1997-1397

Кл.слова (ненормированные):
Charge model -- Electric double layer -- Electrolyte transport -- Membrane potential -- Nanoporous membrane -- Space

Аннотация: The impact of potential applied to the conductive surface of nanoporous membrane on the membrane potential at zero current is investigated theoretically on the basis of two–dimensional Space–charge model. The membrane separates two reservoirs with different salt concentrations. It is shown that the variation of applied potential from negative to positive values results in the continuous change of membrane selectivity from cation to anion. For equal ion diffusion coefficients, the dependence of membrane potential on the applied potential is an odd function, while for different ion diffusion coefficients it is shifted along the applied potential axis due to contribution of diffusion potential enhanced by the induced charge effect. The decrease of pore radius results in the increase of ionic selectivity and steep transition between cation– selective and anion–selective states when the applied potential is changing. © Siberian Federal University.

Scopus,
Смотреть статью

Держатели документа:
Institute of Computational Modelling SB RAS, Akademgorodok, 50–44, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodny, 79, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Ryzhkov, I. I.; Vyatkin, A. S.; Medvedeva, M. I.

    Modelling of Electrochemically Switchable Ion Transport in Nanoporous Membranes with Conductive Surface
/ I. I. Ryzhkov, A. S. Vyatkin, M. I. Medvedeva // J. Sib. Fed. Univ.-Math. Phys. - 2019. - Vol. 12, Is. 5. - P579-589, DOI 10.17516/1997-1397-2019-12-5-579-589. - Cited References:32. - The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, to the research project 18-48-242011 "Mathematical modelling of synthesis and ionic transport properties of conductive nanoporous membranes". . - ISSN 1997-1397. - ISSN 2313-6022
РУБ Mathematics

Аннотация: The impact of potential applied to the conductive surface of nanoporous membrane on the membrane potential at zero current is investigated theoretically on the basis of two-dimensional Space-charge model. The membrane separates two reservoirs with different salt concentrations. It is shown that the variation of applied potential from negative to positive values results in the continuous change of membrane selectivity from cation to anion. For equal ion diffusion coefficients, the dependence of membrane potential on the applied potential is an odd function, while for different ion diffusion coefficients it is shifted along the applied potential axis due to contribution of diffusion potential enhanced by the induced charge effect. The decrease of pore radius results in the increase of ionic selectivity and steep transition between cation- selective and anion-selective states when the applied potential is changing.

WOS

Держатели документа:
Inst Computat Modelling SB RAS, Akademgorodok 50-44, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Ryzhkov, Ilya I.; Vyatkin, Anton S.; Medvedeva, Maria, I; Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science [18-48-242011]

    Magnetic field effect on recombination of radicals diffusing on a two-dimensional plane
/ N. N. Lukzen, K. L. Ivanov, V. M. Sadovsky, R. Z. Sagdeev // J Chem Phys. - 2020. - Vol. 152, Is. 3. - Ст. 034103, DOI 10.1063/1.5131583 . - ISSN 0021-9606
Аннотация: Magnetic Field Effects (MFEs) on the recombination of radicals, which diffuse on an infinite plane, are studied theoretically. The case of spin-selective diffusion-controlled recombination of Radical Pairs (RPs) starting from a random spin state is considered assuming uniform initial distribution of the radicals. In this situation, reaction kinetics is described by a time-dependent rate coefficient K(t), which tends to zero at long times. Strong MFEs on K(t) are predicted that originate from the ?g and hyperfine driven singlet-triplet mixing in the RP. The effects of spin relaxation on the magnetic field are studied, as well as the influence of the dipole-dipole interaction between the electron spins of the RP. In the two-dimensional case, this interaction is not averaged out by diffusion and it strongly affects the MFE. The results of this work are of importance for interpreting MFEs on lipid peroxidation, a magnetosensitive process occurring on two-dimensional surfaces of cell membranes. © 2020 Author(s).

Scopus

Держатели документа:
International Tomography Center, Siberian Branch, Russian Academy of Sciences, Institutskaya Str. 3a, Novosibirsk, 630090, Russian Federation
Novosibirsk State University, Pirogova Str. 1, Novosibirsk, 630090, Russian Federation
Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/44, Krasnoyarsk, 660036, Russian Federation
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, Leninskii Prospect 31, Moscow, 19991, Russian Federation

Доп.точки доступа:
Lukzen, N. N.; Ivanov, K. L.; Sadovsky, V. M.; Sagdeev, R. Z.