Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 8

    Mathematical modeling of the electrolytic obtaining of aluminum to solve technology-control problems
[Text] / V. M. Belolipetskii, T. V. Piskazhova // Russ. J. Non-Ferrous Metals. - 2013. - Vol. 54, Is. 5. - P398-402, DOI 10.3103/S1067821213050039. - Cited References: 5 . - ISSN 1067-8212
РУБ Metallurgy & Metallurgical Engineering

Аннотация: A thermal dynamic model of the electrolyzer is considered and certain production events are modeled. Results of variations in production parameters after controlling actions are considered.

Полный текст


Доп.точки доступа:
Belolipetskii, V.M.; Белолипецкий, Виктор Михайлович; Piskazhova, T.V.

    Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles
[Text] / A. E. Ershov [et al.] // Appl. Phys. B-Lasers Opt. - 2014. - Vol. 115, Is. 4. - P. 547-560, DOI 10.1007/s00340-013-5636-6. - Cited References: 48. - Authors are thankful to Prof. V. A. Markel (University of Pennsylvania) for supplying program codes for realization of the coupled dipole method for polydisperse metal nanoparticle aggregates. This research was supported by the Russian Academy of Sciences under the Grants 24.29, 24.31, III.9.5, 43, SB RAS-SFU (101); Ministry of Education and Science of Russian Federation under Contract 14.B37.21.0457. . - ISSN 0946-2171. - ISSN 1432-0649
РУБ Optics + Physics, Applied

Аннотация: We propose an optodynamical model of interaction of pulsed laser radiation with aggregates of spherical metallic nanoparticles embedded into host media. The model takes into account polydispersity of particles, pair interactions between the particles, dissipation of absorbed energy, heating and melting of the metallic core of particles and of their polymer adsorption layers, and heat exchange between electron and ion components of the particle material as well as heat exchange with the interparticle medium. Temperature dependence of the electron relaxation constant of the particle material and the effect of this dependence on interaction of nanoparticles with laser radiation are first taken into consideration. We study in detail light-induced processes in the simplest resonant domains of multiparticle aggregates consisting of two particles of an arbitrary size in aqueous medium. Optical interparticle forces are realized due to the light-induced dipole interaction. The dipole moment of each particle is calculated by the coupled dipole method (with correction for the effect of higher multipoles). We determined the role of various interrelated factors leading to photomodification of resonant domains and found an essential difference in the photomodification mechanisms between polydisperse and monodisperse nanostructures.

WOS,
Scopus

Держатели документа:
[Ershov, A. E.
Karpov, S. V.
Semina, P. N.] Russian Acad Sci, LV Kirenski Inst Phys, Krasnoyarsk 660036, Russia
[Gavrilyuk, A. P.] Russian Acad Sci, Inst Computat Modeling, Krasnoyarsk 660036, Russia
[Gavrilyuk, A. P.
Karpov, S. V.] Siberian Fed Univ, Krasnoyarsk 660028, Russia
ИФ СО РАН
ИВМ СО РАН

Доп.точки доступа:
Ershov, A.E.; Gavrilyuk, A.P.; Гаврилюк, Анатолий Петрович; Karpov, S.V.; Semina, P.N.; Russian Academy of Sciences [24.29, 24.31, III.9.5, 43, SB RAS-SFU (101)]; Ministry of Education and Science of Russian Federation [14.B37.21.0457]

    Steady state multiplicity of the kinetic model of CO oxidation reaction
/ V. I. Bykov, G. S. Yablonskii, V. I. Elokhin // Surface Science. - 1981. - Vol. 107, Is. 1. - PL334-L338 . - ISSN 0039-6028

Аннотация: It has been shown that a Langmuir-Hinshelwood mechanism used for an explanation of the kinetics of CO oxidation on platinum group metals is the simplest mechanism providing the multiplicity of steady states of the catalytic surface. This fact is not often taken into consideration in the studies concerning the Langmuir-Hinshelwood mechanism. В© 1981.

Scopus

Держатели документа:
Computing Centre, Krasnoyarsk, Russian Federation
Institute of Catalysis, Siberian Branch, the USSR Academy of Sciences, Novosibirsk, 630090, Russian Federation
ИВМ СО РАН

Доп.точки доступа:
Bykov, V.I.; Быков, Валерий Иванович; Yablonskii, G.S.; Elokhin, V.I.

    Численное моделирование деформации пористых металлов
[Текст] : статья / В. М. Садовский, О. В. Садовская // Решетневские чтения. - 2015. - Т. 2, № 19. - С. 158-160 . - ISSN 1990-7702
   Перевод заглавия: Numerical modeling porous metals deformation
УДК

Аннотация: На основе обобщенного реологического метода построена математическая модель упруго-пластического деформирования пористых металлов, которые могут применяться в аэрокосмической промышленности в качестве легковесных наполнителей. Разработан алгоритм численной реализации модели на многопроцессорных вычислительных системах.
Based on the generalized rheological method, we construct the mathematical model of elastic-plastic deformation of porous metals, which can be used as lightweight fillers in the aerospace industry. We develop the algorithm for numerical implementation of this model on clusters.

РИНЦ,
Полный текст

Держатели документа:
Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Sadovskaya O.V.
629.783
Т343

    ТЕПЛОВОЙ АККУМУЛЯТОР ДЛЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ МОЩНЫХ БЛОКОВ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ КРАТКОВРЕМЕННОГО ДЕЙСТВИЯ
[Текст] : статья / Е. Н. Васильев, В. А. Деревянко, В. Е. Чеботарев // Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева. - 2016. - Т. 17, № 4. - С. 930-935 . - ISSN 1816-9724
   Перевод заглавия: THERMAL STORAGE TO THE TEMPERATURE CONTROL SYSTEM OF POWERFUL BLOCKS OF ELECTRONIC EQUIPMENT WITH A SHORT ACTION TIME
УДК

Аннотация: Аккумулирование скрытой теплоты является одним из наиболее эффективных способов терморегулирования. В отличие от способа аккумулирования за счет обычной теплоемкости, способ аккумулирования за счет скрытой теплоты обеспечивает гораздо более высокую плотность аккумулирования с меньшей разницей температуры между процессами аккумулирования и выделения теплоты. Рассмотрена система терморегулирования космического аппарата, основанная на применении веществ с фазовым переходом «твердое тело - жидкость», для мощных тепловыделяющих узлов, которые работают с периодическим и кратковременным включением. Рассмотрены различные группы теплоаккумулирующих веществ, таких как металлы, неорганические и органические материалы. Органические материалы определены как оптимальные вещества для терморегулирования бортовой радиоэлектронной аппаратуры. Большинство органических теплоаккумулирующих веществ являются неагрессивными и химически стабильными, практически не переохлаждаются, совместимы с большинством материалов и имеют высокую скрытую теплоту на единицу веса. Их основным недостатком является низкое значение коэффициента теплопроводности. Этот недостаток применения органических теплоаккумулирующих веществ, связанный с низкой теплопроводностью, может быть успешно решен с помощью параллельно расположенных в объеме теплового аккумулятора гипертеплопроводящих пластин. Представлен анализ применения тепловых аккумуляторов с гипертеплопроводящими пластинами в качестве ребер для обеспечения оптимальных тепловых режимов блоков радиоэлектронной аппаратуры. Выполнен расчет основных параметров теплового аккумулятора. Определены масса теплоаккумулирующего вещества, количество ребер, расстояние между ребрами в зависимости от амплитуды температурных колебаний, тепловыделения радиоэлектронной аппаратуры и теплофизических свойств вещества. На основе решения уравнения теплопроводности проведен расчет эффективности теплообмена ребер в объеме теплового аккумулятора. Показана более высокая эффективность теплообмена гипертеплопроводящих пластин по сравнению медными ребрами.
Latent heat storage is one of the most efficient ways of thermal control. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between storing and releasing heat. This paper considers a spacecraft thermal control system based of solid-liquid phase change material for the high heat dissipating component which works intermittently with short duty. Different groups of thermal storage materials, such as metals, inorganic and organic materials are considered. Organic materials are defined as the optimal substances for the thermal control of spacecraft electronic equipment are determined. Most organic thermal storage materials are non-corrosive and chemically stable, exhibit little or no subcooling, are compatible with most materials and have a high latent heat per unit weight. Their main disadvantage is low value of the coefficient of thermal conductivity. The drawback of organic thermal storage materials application due to low thermal conductivity can be successfully resolved by means of parallel arrangement of the hyperheat-conducting plates in the volume of the heat accumulator. Analysis of the use of thermal accumulators with hyperheat-conducting plates as edges for optimal thermal modes of blocks of electronic equipment is presented. The calculation of the basic parameters of the thermal accumulator is performed. Mass of heat storage material, number of edges, spacing between edges depending on the temperature fluctuation amplitude, of the electronic equipment heat and properties of material was determined. On the basis of the solution of the heat equation the calculation of the heat exchange efficiency of edges in the volume of the heat accumulator is made. Higher heat exchange efficiency of the hyperheat-conducting plates compared to copper edges is showed.

РИНЦ

Держатели документа:
АО «Информационные спутниковые системы» имени академика М. Ф. Решетнева»
Красноярский научный центр СО РАН, Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Деревянко, Валерий Александрович; Derevyanko V.A.; Чеботарев, В.Е.; Chebotarev V.E.; Vasilyev E.N.

    Surface plasmon resonances in liquid metal nanoparticles
/ A. E. Ershov [et al.] // Appl Phys B. - 2017. - Vol. 123, Is. 6, DOI 10.1007/s00340-017-6755-2 . - ISSN 0946-2171
Аннотация: We have shown significant suppression of resonant properties of metallic nanoparticles at the surface plasmon frequency during the phase transition “solid–liquid” in the basic materials of nanoplasmonics (Ag, Au). Using experimental values of the optical constants of liquid and solid metals, we have calculated nanoparticle plasmonic absorption spectra. The effect was demonstrated for single particles, dimers and trimers, as well as for the large multiparticle colloidal aggregates. Experimental verification was performed for single Au nanoparticles heated to the melting temperature and above up to full suppression of the surface plasmon resonance. It is emphasized that this effect may underlie the nonlinear optical response of composite materials containing plasmonic nanoparticles and their aggregates. © 2017, Springer-Verlag Berlin Heidelberg.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
Siberian State University of Science and Technologies, Krasnoyarsk, Russian Federation
L.V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ershov, A. E.; Gerasimov, V. S.; Gavrilyuk, A. P.; Karpov, S. V.

    Titanium nitride as light trapping plasmonic material in silicon solar cell
/ N. Venugopal [et al.] // Opt Mater. - 2017. - Vol. 72. - P397-402, DOI 10.1016/j.optmat.2017.06.035 . - ISSN 0925-3467

Кл.слова (ненормированные):
Photovoltaics -- Plasmonics -- Titanium nitride -- Absorption spectroscopy -- CMOS integrated circuits -- Efficiency -- Gold -- Metals -- MOS devices -- Nanoparticles -- Nanostructured materials -- Nitrides -- Optoelectronic devices -- Plasmons -- Semiconductor devices -- Silicon -- Silver -- Solar cells -- Solar power generation -- Thin film solar cells -- Thin films -- Time domain analysis -- Tin oxides -- Titanium -- Titanium compounds -- Titanium nitride -- Absorption enhancement -- Complementary metal oxide semiconductors -- Nanoparticle diameter -- Other opto-electronic devices -- Photovoltaics -- Plasmonic nanoparticle -- Plasmonics -- Thin-film silicon solar cells -- Silicon solar cells

Аннотация: Light trapping is a crucial prominence to improve the efficiency in thin film solar cells. However, last few years, plasmonic based thin film solar cells shows potential structure to improve efficiency in photovoltaics. In order to achieve the high efficiency in plasmonic based thin film solar cells, traditionally noble metals like Silver (Ag) and Gold (Au) are extensively used due to their ability to localize the light in nanoscale structures. In this paper, we numerically demonstrated the absorption enhancement due to the incorporation of novel plasmonic TiN nanoparticles on thin film Silicon Solar cells. Absorption enhancement significantly affected by TiN plasmonic nanoparticles on thin film silicon was studied using Finite-Difference-Time-Domain Method (FDTD). The optimal absorption enhancement 1.2 was achieved for TiN nanoparticles with the diameter of 100 nm. The results show that the plasmonic effect significantly dominant to achieve maximum absorption enhancement g(?) at longer wavelengths (red and near infrared) and as comparable with Au nanoparticle on thin film Silicon. The absorption enhancement can be tuned to the desired position of solar spectrum by adjusting the size of TiN nanoparticles. Effect of nanoparticle diameters on the absorption enhancement was also thoroughly analyzed. The numerically simulated results show that TiN can play the similar role as gold nanoparticles on thin film silicon solar cells. Furthermore, TiN plasmonic material is cheap, abundant and more Complementary Metal Oxide Semiconductor (CMOS) compatible material than traditional plasmonic metals like Ag and Au, which can be easy integration with other optoelectronic devices. © 2017 Elsevier B.V.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
L.V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Venugopal, N.; Gerasimov, V. S.; Ershov, A. E.; Karpov, S. V.; Polyutov, S. P.

    Virtual casting and rolling lines development
/ P. N. Yakiv'Yuk [et al.] // IOP Conference Series: Materials Science and Engineering : Institute of Physics Publishing, 2019. - Vol. 537: International Workshop on Advanced Technologies in Material Science, Mechanical and Automation Engineering - MIP: Engineering-2019 (4 April 2019 through 6 April 2019, ) Conference code: 149243, Is. 3, DOI 10.1088/1757-899X/537/3/032094 . -
Аннотация: The article describes an example of a casting and rolling complex. A program has been developed for calculating the temperature of the metal in the casting and rolling complex sites which is based on a mathematical model for controlling the water cooling of a rotary mold in TIA Portal software using an S7-1200 microprocessor controller. Presents the structure and user interface of the program. The program blocks of the rotary mold, as well as the section of water and air cooling are developed, which include design and thermophysical parameters necessary for calculating according to the mathematical model. In this way, the replacement of any of them with a similar one with modified parameters is possible without making changes to the program structure. The program can be used to debug control algorithms. © Published under licence by IOP Publishing Ltd.

Scopus,
Смотреть статью

Держатели документа:
Siberian Federal University, Institute of Nonferrous Metals and Materials Science, 95 Krasnoyarsky Rabochy Av., Krasnoyarsk, 660025, Russian Federation
Institute of Computational Modeling, Siberian Branch of Russian Academy of Sciences, 50/44 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Yakiv'Yuk, P. N.; Piskazhova, T. V.; Belolipetskii, V. M.; Nesterov, G. A.