Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 3

    Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances
[Text] / K.V. Purtov [et al.] // Nanoscale Res. Lett. - 2010. - Vol. 5, Is. 3. - pp. 631-636, DOI 10.1007/s11671-010-9526-0. - Cited References: 24. - This work was supported by the Program # 27 for Basic Research of the Presidium of RAS (project 3.6.3). . - ISSN 1931-7573
РУБ Nanoscience & Nanotechnology + Materials Science, Multidisciplinary + Physics, Applied

Аннотация: Surface of detonation nanodiamonds was functionalized for the covalent attachment of immunoglobulin, and simultaneously bovine serum albumin and Rabbit Anti-Mouse Antibody. The nanodiamond-IgG(I125) and RAM-nanodiamond-BSA(I125) complexes are stable in blood serum and the immobilized proteins retain their biological activity. It was shown that the RAM-nanodiamond-BSA(I125) complex is able to bind to the target antigen immobilized on the Sepharose 6B matrix through antibody-antigen interaction. The idea can be extended to use nanodiamonds as carriers for delivery of bioactive substances (i.e., drugs) to various targets in vivo.


Доп.точки доступа:
Purtov, K.V.; Petunin, A.I.; Burov, A.E.; Буров, Андрей Ефимович; Puzyr, A.P.; Bondar, V.S.
539.3, 519.63
Н 25

    Наномодифицирование полимерного связующего с целью повышения свойств углепластиковых материалов
[Текст] : статья / Г. Г. Крушенко, О. А. Исеева // Сибирский журнал науки и технологий. - 2017. - Т. 18, № 3. - С. 651-657 . - ISSN 2587-6066
   Перевод заглавия: Nano modification of polymer binder with the aim of improving the properties of carbon fibre materials
УДК

Аннотация: Одной из проблем космического машиностроения является снижение массы деталей, узлов и механизмов как собственно космического аппарата, так и средств доставки его на орбиту, т. е. ракеты-носителя. Прогрессивным решением этой проблемы является применение так называемых сетчатых (анизогридных - anisogrid) конструкций. В настоящее время сетчатые конструкции, материалом для которых является угле- пластик, широко применяются в космической технике для изготовления различных пустотелых трубчатых и конических конструкций космических аппаратов. Наиболее распространенным способом изготовления угле- пластиковых сетчатых конструкций является их намотка из углеродных волокон. Однако при всех положи- тельных качествах углепластиковых конструкций, в связи с однонаправленностью их структуры, их эффек- тивное использование возможно только при одноосном нагружении, когда растягивающие и сжимающие напряжения совпадают с направлением волокон. В случае сложного сопротивления или изгиба, когда в мате- риале возникает сложное напряженное состояние, могут произойти разрушения как от действия скалывающих касательных напряжений, так и от нормальных напряжений. Строгая ориентация волокон в одном направле- нии обусловливает анизотропию физико-механических свойств однонаправленных композитов. При нагрузке, приложенной нормально к направлению волокон, происходит разрушение углепластиковой конструкции прак- тически без ее предварительной пластической деформации. Проблема повышения механических свойств угле- пластиковых материалов успешно решается в результате введения в полимерное связующее нанопорошков различных химических соединений. Этот процесс называется наномодифицированием. Причем в этом плане наиболее эффективным оказались углеродные нанопорошки, включая наноалмазы.
One of the problems in space engineering is the reduction of masses parts, assemblies and mechanisms as the actual spacecraft, and the means to deliver it to the orbit, i. e. booster. Progressive solution of this problem is the use of so- called net (anisogrid) structures. And currently mesh structure, the material for which is carbon fiber, are widely used in space technology for the manufacture of hollow tubular and conical designs of the spacecraft. The most common method of making carbon mesh designs is the winding of carbon fibers. However, with all the positive qualities of CFRP structures, in connection with the pointedness of their structure, and their effective use is possible only under uniaxial loading when tensile and compressive stresses coincide with the fiber direction. In the case of complex resis- tance or bending when the material occurs in the complex stress state can cause the destruction, as from the action of shear stresses and normal stresses. Strict fiber orientation in one direction leads to anisotropy of physical and mechanical properties of unidirectional composites. When the load applied normal to the direction of the fibers is destroyed by carbon fiber construction practically without preliminary plastic deformation. The problem of improving the mechanical properties of the CFRP materials was successfully solved by introducing in the polymer binder nano- powders of different chemical compounds - a process called nanomodification. And, in this regard, the most effective was the carbon nanopowders, including nanodiamonds.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН
Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева

Доп.точки доступа:
Крушенко, Г.Г.; Krushenko G.G.; Исеева, О.А.; Iseeva O.A.

    Production of a Composite Based on Alumina Nanofibers and Detonation Nanodiamonds for Creating Phenol Indication Systems
/ N. O. Ronzhin, E. D. Posokhina, E. V. Mikhlina [et al.] // Dokl. Chem. - 2019. - Vol. 489, Is. 1. - P267-271, DOI 10.1134/S001250081911003X . - ISSN 0012-5008

Аннотация: Abstract: A composite of alumina nanofibers (ANF) and modified detonation nanodiamonds (MDND) was produced by mixing aqueous suspensions of the components in a weight ratio of 5 : 1 with subsequent incubation of the mixture for 15 min at 32°C. It was assumed that the formation of the composite is ensured by the difference of the zeta potentials of the components, which is negative for MDND and positive for ANF. Vacuum filtration of the mixture through a fluoroplastic filter (pore diameter 0.6 ?m) formed disks 40 mm in diameter, which were then heat-treated at 300°C to impart structural stability to the composite. Scanning electron microscopy detected that the obtained composite has a network structure, in which MDND particles are distributed over the surface of ANF. It was determined that the MDND particles incorporated in the composite catalyze the phenol–4-aminoantipyrine–H2O2 oxidative azo coupling reaction to form a colored product (quinoneimine). The applicability of the composite to repeated phenol detection in aqueous samples was demonstrated. © 2019, Pleiades Publishing, Ltd.

Scopus,
WOS

Держатели документа:
Institute of Biophysics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, AkademgorodokKrasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Computational Modeling, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, AkademgorodokKrasnoyarsk, 660036, Russian Federation
Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, AkademgorodokKrasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Ronzhin, N. O.; Posokhina, E. D.; Mikhlina, E. V.; Simunin, M. M.; Nemtsev, I. V.; Ryzhkov, I. I.; Bondar, V. S.