Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 9

    Preparation and ionic selectivity of carbon-coated alumina nanofiber membranes
/ D. V. Lebedev [et al.] // Pet. Chem. - 2017. - Vol. 57, Is. 4. - P306-317, DOI 10.1134/S096554411704003X. - Cited References:52. - This work was supported by the Russian Science Foundation, grant no. 15-19-10017. Instrumental analysis of the materials was performed in the Shared Equipment Center at the Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy Sciences. . - ISSN 0965-5441. - ISSN 1555-6239
РУБ Chemistry, Organic + Chemistry, Physical + Energy & Fuels + Engineering,

Аннотация: A novel type of ion-selective membranes based on Nafen(TM) alumina nanofibers coated with carbon is proposed. The membranes are produced by filtration of a Nafen nanofiber suspension through a porous support followed by drying and sintering. A thin carbon layer (up to 2 nm) is deposited on the nanofibers by chemical vapor deposition (CVD). Its formation is confirmed by the results of Raman spectroscopy and visually observed in TEM images. According to low temperature nitrogen adsorption experiments, the formation of carbon layer leads to decreasing pore size (the maximum of pore size distribution shifts from 28 to 16 nm) and the corresponding decrease of porosity (from 75 to 62%) and specific surface area (from 146 to 107 m(2)g(-1)). The measurement of membrane potential in an electrochemical cell has shown that the deposition of carbon on the membrane results in high ionic selectivity. In an aqueous KCl solution, the membranes display high anion selectivity with anion and cation transference numbers of 0.94 and 0.06, respectively. The fixed-charge density of membrane has been determined by fitting the experimental data using the Teorell-Meyer-Sievers model. It has been found that the membrane fixed-charge density increases with increasing electrolyte concentration. Possible applications of the membranes produced include nanofiltration, ultrafiltration, and separation of charged species in mixtures. The formation of a conductive carbon layer on the pore surface can be employed for fabricating membranes with switchable ion-transport selectivity.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk, Russia.
Russian Acad Sci, Siberian Branch, Mol Elect Dept, Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia.
Natl Res Univ Elect Technology MIET, Moscow, Russia.
Russian Acad Sci, Siberian Branch, Inst Chem & Chem Technol, Krasnoyarsk, Russia.

Доп.точки доступа:
Lebedev, D.V.; Лебедев Д.В.; Shiverskiy, A. V.; Simunin, M. M.; Solodovnichenko, V.S.; Солодовниченко В.С.; Parfenov, V. A.; Bykanova, V. V.; Khartov, S. V.; Ryzhkov, I.I.; Рыжков, Илья Игоревич; Russian Science Foundation [15-19-10017]

    Синтез мембран на основе нановолокон оксида алюминия и исследование их ионной селективности
[Текст] : статья / Д. В. Лебедев [и др.] // Мембраны и мембранные технологии. - 2017. - Т. 7, № 2. - С. 86-98, DOI 10.1134/S2218117217020031 . - ISSN 2218-1172

Аннотация: Предложен новый тип керамических мембран с ионной селективностью на основе нановолокон оксида алюминия (NafenTM), покрытых слоем углерода. Синтез мембран осуществляется методом вакуумной фильтрации коллоидного раствора волокон Nafen с последующим термическим отжигом и нанесением углеродного слоя методом химического осаждения из газовой фазы (chemical vapor deposition, CVD). Данные просвечивающей электронной микроскопии и спектроскопии комбинационного рассеяния подтверждают формирование углеродного слоя толщиной до 2 нм на нановолокнах. По данным низкотемпературной адсорбции азота, это приводит к уменьшению размера пор (максимум функции распределения смещается от 28 к 16 нм) и соответственному снижению пористости (с 75 до 62%) и удельной поверхности мембраны (с 146 до 107 м2 г–1). С помощью потенциометрического метода установлено, что нанесение углеродного слоя на мембраны из волокон Nafen придает им выраженные ионоселективные свойства. Измерения в водном растворе KCl показали, что полученные мембраны являются анион-селективными с числами переноса 0.94 для аниона и 0.06 для катиона. Определена плотность фиксированного заряда мембран путем аппроксимации экспериментальных данных моделью Теорелла–Мейера–Сиверса. Показано, что плотность заряда возрастает с увеличением концентрации электролита. Полученные мембраны могут быть применены в области нано- и ультрафильтрации, а также для разделения заряженных компонентов смесей. Нанесение проводящего углеродного слоя на поверхность пор является перспективным для создания мембран с управляемой ионной селективностью.
A novel type of ion-selective membranes based on NafenTM alumina nanofibers covered with carbon is proposed. The membranes are produced by filtration of Nafen nanofiber suspension through a porous support followed by drying and sintering. A thin carbon layer (up to 2 nm) is deposited on the nanofibers with the help of chemical vapor deposition (CVD). Its formation is confirmed by the results of Raman spectroscopy and visually observed in TEM images. According to low temperature nitrogen adsorption experiments, the formation of carbon layer leads to decreasing pore size (the maximum of pore size distribution shifts from 28 to 16 nm) and the corresponding decrease of porosity (from 75 to 62%) and specific surface area (from 146 to 107 m2 g–1). The measurement of membrane potential in an electrochemical cell shows that the deposition of carbon on the membrane results in high ionic selectivity. In an aqueous KCl solution, the membranes display high anion–selectivity with transference numbers 0.94 for anion and 0.06 for cation. The fixed charge density of membrane is determined by fitting the experimental data with the help of Teorell–Meyer–Sievers model. It is found that the density of fixed membrane charge increases with increasing the electrolyte concentration. The potential applications of produced membranes include nano- and ultrafiltration as well as separation of charged species in mixtures. The formation of conductive carbon layer on the pore surface can be employed for producing membranes with switchable ion-transport selectivity. Keywords: alumina nanofiber, membrane, chemical vapor deposition, carbon, membrane potential measurement, ionic permselectivity, Teorell–Meyer–Sievers model

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН, Академгородок 50-44, Красноярск, Россия
Институт химии и химической технологии СО РАН, Академгородок 50-24, Красноярск, Россия
Красноярский научный центр СО РАН, Академгородок 50, Красноярск, Россия
Национальный исследовательский университет “МИЭТ”, Площадь Шокина, 1, Зеленоград, Москва, Россия

Доп.точки доступа:
Лебедев, Д.В.; Шиверский, А.В.; Симунин, М.М.; Солодовниченко, В.С.; Парфенов, В.А.; Быканова, В.В.; Хартов, С.В.; Рыжков, И.И.

    Experimental and modelling study of ionic selectivity in carbon coated alumina nanofiber membranes
/ I. I. Ryzhkov [et al.] // Chemical Engineering Transactions : Italian Association of Chemical Engineering - AIDIC, 2017. - Vol. 60. - P253-258, DOI 10.3303/CET1760043 . -
Аннотация: A novel type of ion-selective membranes, which combine the advantages of ceramic nanofibrous media with good electrical conductivity, is proposed. The membranes are produced from Nafen alumina nanofibers (diameter around 10 nm) by filtration of nanofiber suspension through a porous support followed by drying and sintering. Electrical conductivity is achieved by depositing a thin carbon layer on the nanofibers by CVD. Raman spectroscopy and TEM are used to confirm the carbon structure formation. The average pore size determined by low temperature nitrogen adsorption experiments lies in the range 15-30 nm. Measurements of membrane potential show that the carbon coated membranes acquire high ionic selectivity (transference numbers 0.94 for anion and 0.06 for cation in aqueous KCl). The fixed membrane charge is determined by fitting the experimental data to Teorell-Meyer-Sievers and Space-charge models. © 2017, AIDIC Servizi S.r.l.

Scopus,
Смотреть статью

Держатели документа:
Institute of Computational Modelling SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russian Federation
Molecular Electronics Department KSC SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russian Federation
National Research University of Electronic Technology, MIET, Shokin square 1, Zelenograd, Moscow, Russian Federation
Institute of Chemistry and Chemical Technology SB RAS, Akademgorodok 50-24, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ryzhkov, I. I.; Lebedev, D. V.; Solodovnichenko, V. S.; Shiverskiy, A. V.; Simunin, M. M.; Parfenov, V. A.

    Carbon Coated Alumina Nanofiber Membranes for Selective Ion Transport
/ V. S. Solodovnichenko [et al.] // Adv. Eng. Mater. - 2017. - Vol. 19, Is. 11. - Ст. 1700244, DOI 10.1002/adem.201700244. - Cited References:60. - This work is supported by the Russian Science Foundation, Project 15-19-10017. The physicochemical analysis of materials was carried out on equipment of Krasnoyarsk Scientific Center of Shared Facilities SB RAS. . - ISSN 1438-1656. - ISSN 1527-2648
РУБ Materials Science, Multidisciplinary

Аннотация: The authors propose a novel type of ion-selective membranes, which combine the advantages of ceramic nanofibrous media with good electrical conductivity. The membranes are produced from Nafen alumina nanofibers (diameter around 10nm) by filtration of nanofiber suspension through a porous support followed by drying and sintering. Electrical conductivity is achieved by depositing a thin carbon layer on the nanofibers by chemical vapor deposition (CVD). Raman and FTIR spectroscopy, X-ray fluorescence analysis, and TEM are used to confirm the carbon structure formation. The deposition of carbon leads to decreasing porosity (from 75 to 62%) and specific surface area (from 146 to 107m(2) g(-1)) of membranes, while the pore size distribution maximum shifts from 28 to 16nm. Measurements of membrane potential in an electrochemical cell show that the carbon coated membranes acquire high ionic selectivity (transference numbers 0.94 for anion and 0.06 for cation in aqueous KCl). Fitting the membrane potential data by the Teorell-Meyer-Sievers model shows that the fixed membrane charge increases proportionally with increasing electrolyte concentration. The carbon coated membranes are ideally polarizable for applied voltages from -0.5 to +0.8V. The potential applications of produced membranes include nano- and ultrafiltration, separation of charged species, and switchable ion-transport selectivity.

WOS,
Смотреть статью

Держатели документа:
Inst Computat Modeling SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russia.
Fed Res Ctr KSC SB RAS, Akademgorodok 50, Krasnoyarsk, Russia.
Natl Res Univ Elect Technol MIET, Shokin Sq 1, Moscow, Russia.
Inst Chem & Chem Technol SB RAS, Akademgorodok 50-24, Krasnoyarsk, Russia.

Доп.точки доступа:
Solodovnichenko, Vera S.; Lebedev, Denis V.; Bykanova, Victoria V.; Shiverskiy, Alexey V.; Simunin, Mikhail M.; Parfenov, Vladimir A.; Ryzhkov, Ilya I.; Russian Science Foundation [15-19-10017]

    On the origin of membrane potential in membranes with polarizable nanopores
/ I. I. Ryzhkov [et al.] // J. Membr. Sci. - 2018. - Vol. 549. - P616-630, DOI 10.1016/j.memsci.2017.11.073. - Cited References:69. - This work is supported the Russian Science Foundation, Project 15-19-10017. The physicochemical analysis of materials was carried out on the equipment of Krasnoyarsk Scientific Center of Shared Facilities SB RAS. . - ISSN 0376-7388. - ISSN 1873-3123
РУБ Engineering, Chemical + Polymer Science

Аннотация: We report a new mechanism for the generation of membrane potential in polarizable nanoporous membranes separating electrolytes with different concentrations. The electric field generated by diffusion of ions with different mobilities induces a non-uniform surface charge, which results in charge separation inside the nanopore. The corresponding Donnan potentials appear at the pore entrance and exit leading to a dramatic enhancement of membrane potential in comparison with an uncharged non-polarizable membrane. At high concentration contrast, the interaction between electric field and uncompensated charge at a low concentration side results in the development of electrokinetic vortices. The theoretical predictions are based on the Space-Charge model, which is extended to nanopores with polarizable conductive surface for the first time. This model is validated against full Navier-Stokes, Nernst-Planck, and Poisson equations, which are solved in a high aspect ratio nanopore connecting two reservoirs. The experimental measurements of membrane potential of dielectric and conductive membranes in KCl and NaCl aqueous solutions confirm the theoretical results. The membranes are prepared from Nafen nanofibers with similar to 10 nm in diameter and modified by depositing a conductive carbon layer. It is shown theoretically that the membrane potential enhancement becomes greater with decreasing the electrolyte concentration and pore radius. A high sensitivity of membrane potential to the ratio of ion diffusion coefficients is demonstrated. The described phenomenon may find applications in precise determination of ion mobilities, electrochemical and bio-sensing, as well as design of nanofluidic and bioelectronic devices.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Fed Res Ctr KSC SB RAS, Inst Computat Modelling SB RAS, Akademgorodok 50-44, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Ryzhkov, Ilya I.; Lebedev, Denis V.; Solodovnichenko, Vera S.; Minakov, Andrey V.; Simunin, Mikhail M.; Russian Science Foundation [15-19-10017]

    Effect of Electric Field on Ion Transport in Nanoporous Membranes with Conductive Surface
/ D. V. Lebedev [et al.] // Pet. Chem. - 2018. - Vol. 58, Is. 6. - P474-481, DOI 10.1134/S0965544118060075. - Cited References:32. - This work was supported by the Russian Science Foundation, project no. 15-19-10017. The instrumental analysis of the materials was conducted at the Center for collective use of the Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences. . - ISSN 0965-5441. - ISSN 1555-6239
РУБ Chemistry, Organic + Chemistry, Physical + Energy & Fuels + Engineering,

Аннотация: The effect of an external electric field on the ionic conductivity and selective properties of ceramic membranes based on alumina nanofibers coated with a conductive carbon layer has been studied. It has been shown that the membranes are ideally polarizable in the polarizing voltage range of -500 to +500 mV and, therefore, can be used for implementing switchable ionic selectivity. Experiments have revealed that the membrane resistance decreases with a change in the applied potential from 0 to +/- 500 mV. It has been shown that the membrane selectivity can be switched from anion to cation by varying the external potential. The surface charge density of the membranes has been determined in terms of the Teorell-Meyer-Sievers model according to the experimental measurements of the membrane potential.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Computat Modeling, Krasnoyarsk 660036, Russia.
St Petersburg State Univ, Inst Chem, St Petersburg 198504, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Lebedev, D. V.; Solodovnichenko, V. S.; Simunin, M. M.; Ryzhkov, I. I.; Russian Science Foundation [15-19-10017]
66.081.6
В 58

    Влияние электрического поля на транспорт ионов в нанопористых мембранах с проводящей поверхностью
[Текст] : статья / Д. В. Лебедев [и др.] // Мембраны и мембранные технологии. - 2018. - Т. 8, № 3. - С. 157-165, DOI 10.1134/S2218117218030070 . - ISSN 2218-1172
   Перевод заглавия: The Influence of Electric Field on The Ion Transport on Nanoporous Membranes with Conductive Surface
УДК

Аннотация: В работе исследуется влияние внешнего электрического поля на ионную проводимость и селективные свойства керамических мембран на основе нановолокон оксида алюминия, покрытых проводящим слоем углерода. Показано, что мембраны являются идеально поляризуемыми в области поляризующих напряжений от –500 до +500 мВ, что позволяет использовать их для реализации управляемой ионной селективности. Экспериментально установлено, что сопротивление мембраны уменьшается при изменении приложенного к ней потенциала от 0 до ±500 мВ. Продемонстрирована возможность изменения селективности мембраны от аниона к катиону в зависимости от внешнего потенциала. На основе экспериментальных измерений мембранного потенциала определена поверхностная плотность заряда мембран с помощью модели Теорелла–Мейера–Сиверса.
In this work, we investigate the influence of external electric field on the ionic conductivity and selectivity of ceramic membranes based on alumina nanofibers covered with conductive carbon layer. It is shown that the membranes are ideally polarizable in the range of voltages from –500 mV to +500 mV, which makes them suitable candidates for realizing switchable ionic selectivity. It is found experimentally that the membrane resistance decreases with increasing the potential applied to the membrane from 0 to ±500 mV. The possibility of changing the membrane selectivity from anion to cation depending on the applied potential is demonstrated. The membrane surface charge density is determined from experimental measurements of membrane potential with the help of Teorell-Meyer-Sievers model. Keywords: ceramic membranes, nanopore, conductive surface, ionic selectivity, ionic conductivity, switchable ion transport

РИНЦ

Держатели документа:
Красноярский научный центр СО РАН
Санкт-Петербургский государственный университет, Институт химии, Университетский проспект, 26, Санкт-Петербург, Петергоф, 198504 Россия
Сибирский федеральный университет

Доп.точки доступа:
Лебедев, Д.В.; Lebedev D.V.; Солодовниченко, В.С.; Solodovnichenko V.S.; Симунин, М.М.; Simunin M.M.; Рыжков, И.И.; Ryzhkov I.I.

    Coupled thermal analysis of carbon layers deposited on alumina nanofibres
/ V. S. Solodovnichenko [et al.] // Thermochim. Acta. - 2019. - Vol. 675. - P164-171, DOI 10.1016/j.tca.2019.02.012. - Cited References:50. - The work is supported by the Russian Foundation for Basic Research Grant no. 18-29-19078. The physicochemical analysis of materials was carried out on equipment of Krasnoyarsk Scientific Center of Shared Facilities SB RAS. . - ISSN 0040-6031. - ISSN 1872-762X
РУБ Thermodynamics + Chemistry, Analytical + Chemistry, Physical

Аннотация: Catalyst-free chemical vapor deposition is used to form thin (1-2 nm) carbon layers on the surface of alumina nanofibers resulting in carbon-alumina nanocomposites. Thermal analysis, X-ray fluorescent microanalysis, Raman spectroscopy, and electrical resistance measurements of these composites show that increasing of synthesis time not only increases the amount of carbon on alumina surface, but also the ordering and density of the carbon layers. Nitrogen adsorption data reveal the decrease of total pore volume with increasing the synthesis time. The obtained composite material could be employed for the preparation of ion-selective membranes with switchable ion transport, electroconductive ceramics, and electrochemical sensors.

WOS,
Смотреть статью,
Scopus,
РИНЦ

Держатели документа:
Fed Res Ctr KSC SB RAS, Inst Computat Modelling SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russia.
Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia.
St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia.
Fed Res Ctr KSC SB RAS, Akademgorodok 50, Krasnoyarsk, Russia.
Natl Res Univ Elect Technol, MIST, Shokin Sq 1, Moscow, Russia.
Fed Res Ctr KSC SB RAS, Inst Chem & Chem Technol, Akademgorodok 50-24, Krasnoyarsk, Russia.

Доп.точки доступа:
Solodovnichenko, Vera S.; Simunin, Mikhail M.; Lebedev, Denis, V; Voronin, Anton S.; Emelianov, Aleksei, V; Mikhlin, Yuri L.; Parfenov, Vladimir A.; Ryzhkov, Ilya I.; Russian Foundation for Basic Research Grant [18-29-19078]

    Production of a Composite Based on Alumina Nanofibers and Detonation Nanodiamonds for Creating Phenol Indication Systems
/ N. O. Ronzhin, E. D. Posokhina, E. V. Mikhlina [et al.] // Dokl. Chem. - 2019. - Vol. 489, Is. 1. - P267-271, DOI 10.1134/S001250081911003X . - ISSN 0012-5008

Аннотация: Abstract: A composite of alumina nanofibers (ANF) and modified detonation nanodiamonds (MDND) was produced by mixing aqueous suspensions of the components in a weight ratio of 5 : 1 with subsequent incubation of the mixture for 15 min at 32°C. It was assumed that the formation of the composite is ensured by the difference of the zeta potentials of the components, which is negative for MDND and positive for ANF. Vacuum filtration of the mixture through a fluoroplastic filter (pore diameter 0.6 ?m) formed disks 40 mm in diameter, which were then heat-treated at 300°C to impart structural stability to the composite. Scanning electron microscopy detected that the obtained composite has a network structure, in which MDND particles are distributed over the surface of ANF. It was determined that the MDND particles incorporated in the composite catalyze the phenol–4-aminoantipyrine–H2O2 oxidative azo coupling reaction to form a colored product (quinoneimine). The applicability of the composite to repeated phenol detection in aqueous samples was demonstrated. © 2019, Pleiades Publishing, Ltd.

Scopus,
WOS

Держатели документа:
Institute of Biophysics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, AkademgorodokKrasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Computational Modeling, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, AkademgorodokKrasnoyarsk, 660036, Russian Federation
Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, AkademgorodokKrasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Ronzhin, N. O.; Posokhina, E. D.; Mikhlina, E. V.; Simunin, M. M.; Nemtsev, I. V.; Ryzhkov, I. I.; Bondar, V. S.