Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 25

    Dynamic changes of optical characteristics of resonant domains in metal nanoparticle aggregates under pulsed laser fields
[Text] : статья / A.P. Gavrilyuk, S.V. Karpov // Applied Physics B: Lasers and Optics. - 2011. - p. 65-72DOI 10.1007/s00340-010-4180-x . -


Полный текст

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Karpov, S.V.; Гаврилюк, Анатолий Петрович

    Processes in resonant domains of metal nanoparticle aggregates and optical nonlinearity of aggregates in pulsed laser fields
[Text] : статья / A.P. Gavrilyuk, S.V. Karpov // Applied Physics B: Lasers and Optics. - 2009. - Vol. 97, Iss. 1. - p. 163–173 10.1007/s00340-009-3592-y . -


Полный текст

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Karpov, S.V.; Гаврилюк, Анатолий Петрович

    The effect of nanoparticle diffusion and thermophoresis on convective heat transfer of nanofluid in a circular tube
[Text] / I. I. Ryzhkov, A. V. Minakov // Int. J. Heat Mass Transf. - 2014. - Vol. 77. - P956-969, DOI 10.1016/j.ijheatmasstransfer.2014.05.045. - Cited References: 44. - This work is supported the Krasnoyarsk Regional Foundation of Scientific and Technical Activity (Grant No. 02/13) and the Russian President Grant No. MK-6296.2013.8. . - ISSN 0017-9310. - ISSN 1879-2189
РУБ Thermodynamics + Engineering, Mechanical + Mechanics

Аннотация: Laminar convective heat transfer of water-alumina nanofluid in a circular tube with uniform heat flux is investigated numerically on the basis of two-component model, which takes into account nanoparticle transport by diffusion and thermophoresis. A new expression for thermophoretic mobility is suggested on the basis of existing experimental results and theoretical concepts. It is shown that thermophoresis leads to a significant reduction of nanoparticle volume fraction in the boundary layer near the wall. The corresponding viscosity reduction causes the velocity increase near the wall and flattening of velocity profile near the tube axis to keep the mass flow rate constant. The decrease of wall shear stress leads to the decrease of the required pressure drop. The calculations for two-component model provide higher values of the local and average heat transfer coefficients in comparison with the one-component model. The difference does not exceed 10% and decreases with increasing the thermal Peclet number. The calculations for one-component model show the independence of local and average Nusselt numbers on the nanoparticle volume fraction. The results for two-component model predict the increase of Nusselt number when the thermophoretic effect becomes stronger. The effectiveness of water-alumina nanofluid is analyzed by plotting the average heat transfer coefficient against the required pumping power. It is shown that the nanofluid shows better performance than the base fluid in the range of low pumping power and, correspondingly, low inlet velocity. (C) 2014 Elsevier Ltd. All rights reserved.

WOS

Держатели документа:
[Ryzhkov, Ilya I.] SB RAS, Inst Computat Modelling, Krasnoyarsk 660036, Russia
[Minakov, Andrey V.] Siberian Fed Univ, Inst Engn Phys & Radio Elect, Krasnoyarsk 660041, Russia
ИВМ СО РАН

Доп.точки доступа:
Ryzhkov, I.I.; Рыжков, Илья Игоревич; Minakov, A.V.; Минаков, Андрей Викторович; Krasnoyarsk Regional Foundation of Scientific and Technical Activity [02/13]; Russian President Grant [MK-6296.2013.8]

    The influence of nanoparticle migration on forced convective heat transfer of nanofluid under heating and cooling regimes
[Text] / S. V. Kozlova, I. I. Ryzhkov // Eur. Phys. J. E. - 2014. - Vol. 37, Is. 9. - Ст. 87, DOI 10.1140/epje/i2014-14087-0. - Cited References: 44. - The authors are grateful to Dr. A. V. Minakov for assistance in ANSYS Fluent numerical calculations. This work is supported the Krasnoyarsk Regional Foundation of Scientific and Technical Activity (Grant 02/13). . - ISSN 1292-8941. - ISSN 1292-895X
РУБ Chemistry, Physical + Materials Science, Multidisciplinary + Physics, Applied + Polymer Science

Аннотация: In this paper, laminar convective heat transfer of water-alumina nanofluid in a circular tube with uniform heat flux at the tube wall is investigated. The investigation is performed numerically on the basis of two-component model, which takes into account nanoparticle transport by diffusion and thermophoresis. Two thermal regimes at the tube wall, heating and cooling, are considered and the influence of nanoparticle migration on the heat transfer is analyzed comparatively. The intensity of thermophoresis is characterized by a new empirical model for thermophoretic mobility. It is shown that the nanoparticle volume fraction decreases (increases) in the boundary layer near the wall under heating (cooling) due to thermophoresis. The corresponding variations of nanofluid properties and flow characteristics are presented and discussed. The intensity of heat transfer for the model with thermophoresis in comparison to the model without thermophoresis is studied by plotting the dependence of the heat transfer coefficient on the Peclet number. The effectiveness of water-alumina nanofluid is analyzed by plotting the average heat transfer coefficient against the required pumping power. The analysis of the results reveals that the water-alumina nanofluid shows better performance in the heating regime than in the cooling regime due to thermophoretic effect.

WOS

Держатели документа:
[Kozlova, Sofya V.
Ryzhkov, Ilya I.] Inst Computat Modelling SB RAS, Krasnoyarsk 660036, Russia
ИВМ СО РАН

Доп.точки доступа:
Kozlova, S.V.; Ryzhkov, I.I.; Рыжков, Илья Игоревич; Krasnoyarsk Regional Foundation of Scientific and Technical Activity [02/13]

    Effect of local environment in resonant domains of polydisperse plasmonic nanoparticle aggregates on optodynamic processes in pulsed laser fields
[Text] / A. E. Ershov [et al.] // Chin. Phys. B. - 2015. - Vol. 24, Is. 4. - Ст. 047804, DOI 10.1088/1674-1056/24/4/047804. - Cited References:25. - Project supported by the Russian Academy of Sciences (Grant Nos. 24.29, 24.31, III.9.5, 43, SB RAS-SFU (101), and 3-9-5). . - ISSN 1674-1056. - ISSN 1741-4199
РУБ Physics, Multidisciplinary
Рубрики:
METAL NANOPARTICLES
   GOLD NANOPARTICLES

   OPTICAL-PROPERTIES

Кл.слова (ненормированные):
nanoparticle -- surface plasmon -- colloid aggregate -- optodynamics

Аннотация: Interactions of pulsed laser radiation with resonance domains of multiparticle colloidal aggregates having an increasingly complex local environment are studied via an optodynamic model. The model is applied to the simplest configurations, such as single particles, dimers, and trimers consisting of mono- and polydisperse Ag nanoparticles. We analyze how the local environment and the associated local field enhancement by surrounding particles affect the optodynamic processes in domains, including their photomodification and optical properties.

WOS,
Полный текст на сайте журнала,
Scopus,
Смотреть статью

Держатели документа:
Russian Acad Sci, LV Kirensky Inst Phys, Krasnoyarsk 660036, Russia
Russian Acad Sci, Inst Computat Modeling, Krasnoyarsk 660036, Russia
Siberian State Aerosp Univ, Krasnoyarsk 660014, Russia
Siberian Fed Univ, Krasnoyarsk 660028, Russia

Доп.точки доступа:
Ershov, A.E.; Gavrilyuk, A.P.; Гаврилюк, Анатолий Петрович; Karpov, S.V.; Semina, P.N.; Russian Academy of Sciences [24.29, 24.31, III.9.5, 43, SB RAS-SFU (101), 3-9-5]

    Plasmonic Nanoparticle Aggregates in High-Intensity Laser Fields: Effect of Pulse Duration
[Text] / A. E. Ershov, A. P. Gavrilyuk, S. V. Karpov // Plasmonics. - 2016. - Vol. 11, Is. 2. - P403-410, DOI 10.1007/s11468-015-0054-8. - Cited References:20. - Authors are thankful to Prof. V.A. Markel (University of Pennsylvania) for supplying program codes with realization of coupled dipole method for polydisperse nanoparticle aggregates. This work was performed within the state contract of the RF Ministry of Education and Science for Siberian Federal University for scientific research in 2014 (Reference number 1792) . - ISSN 1557-1955. - ISSN 1557-1963
РУБ Chemistry, Physical + Nanoscience & Nanotechnology + Materials Science,
Рубрики:
METAL NANOPARTICLES
Кл.слова (ненормированные):
Nanoparticle -- Surface plasmon -- Colloidal aggregate -- Optodynamics

Аннотация: We use an optodynamic model to study the interaction of pulsed laser radiation of different duration with mono- and polydisperse dimers and trimers of plasmonic nanoparticles as resonant domains of colloid Ag multiparticle aggregates. A comparative analysis of the influence of pulse duration on the kinetic characteristics of domains accompanied by the change in their local structure was carried out taking into account the intensity of incident radiation. The obtained results explain the reasons for laser photochromic reactions in materials containing colloidal aggregates of plasmonic nanoparticles.

WOS,
Scopus,
Смотреть статью

Держатели документа:
Russian Acad Sci, LV Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Inst Computat Modeling, Krasnoyarsk 660036, Russia.
Siberian State Aerosp Univ, Krasnoyarsk 660014, Russia.
Siberian Fed Univ, Krasnoyarsk 660028, Russia.

Доп.точки доступа:
Ershov, A. E.; Gavrilyuk, A. P.; Karpov, S. V.; state contract of the RF Ministry of Education and Science for Siberian Federal University [1792]

    Влияние нагрева наночастиц оптического плазмонного волновода на его трансмиссионные свойства
[Текст] : статья / В. С. Герасимов [и др.] // Решетневские чтения. - 2015. - Т. 1, № 19. - С. 506-509 . - ISSN 1990-7702
   Перевод заглавия: Effect of heating particles in optical plasmonic nanowaveguide on its transmission properties
УДК

Аннотация: Рассматривается влияние нагрева частиц оптических плазмонных волноводов как перспективных элементов высокопроизводительных вычислительных комплексов на их функциональные свойства.
We study the effect of heating the particles by laser radiation in optical plasmonic nanowaveguides as the promising elements of high-performance computing systems on the functional properties.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН
Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева
Сибирский федеральный университет

Доп.точки доступа:
Герасимов, В.С.; Gerasimov V.S.; Ершов, Александр Евгеньевич; Ershov A.E.; Гаврилюк, Анатолий Петрович; Gavrilyuk A.P.; Рассказов, И.Л.; Rasskazov I.L.; Полютов, С.П.; Polutov S.P.; Карпов, С.В.; Karpov S.V.

    Optimization of photothermal methods for laser hyperthermia of malignant cells using bioconjugates of gold nanoparticles
/ V. S. Gerasimov [et al.] // Colloid J. - 2016. - Vol. 78, Is. 4. - P435-442, DOI 10.1134/S1061933X16040050 . - ISSN 1061-933X
Аннотация: Selective action of laser radiation on membranes of malignant cells has been studied in different regimes using conjugates of gold nanoparticles with oligonucleotides by the example of DNA aptamers. Under the conditions of a contact between a bioconjugate and a cell surface and the development of substantial and rapidly relaxing temperature gradients near a nanoparticle, the membranes of malignant cells alone are efficiently damaged due to the local hyperthermia of a cellular membrane. It has been shown that employment of pulsed instead of continuous wave laser radiation provides the localization of the damaging action, which does not involve healthy cells. © 2016, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Siberian Federal University, Svobodnyi pr. 79, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/44, Krasnoyarsk, Russian Federation
Kirenskii Institute of Physics, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/38, Krasnoyarsk, Russian Federation
Reshetnev State Siberian State Aerospace University, pr. Gazety “Krasnoyarskii rabochii” 31, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Gerasimov, V. S.; Ershov, A. E.; Karpov, S. V.; Polyutov, S. P.; Semina, P. N.

    Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state
/ V. S. Gerasimov [et al.] // Opt. Express. - 2016. - Vol. 24, Is. 23. - P26851-26856, DOI 10.1364/OE.24.026851 . - ISSN 1094-4087
Аннотация: Significant suppression of resonant properties of single gold nanoparticles at the surface plasmon frequency during heating and subsequent transition to the liquid state has been demonstrated experimentally and explained for the first time. The results for plasmonic absorption of the nanoparticles have been analyzed by means of Mie theory using experimental values of the optical constants for the liquid and solid metal. The good qualitative agreement between calculated and experimental spectra support the idea that the process of melting is accompanied by an abrupt increase of the relaxation constants, which depends, beside electronphonon coupling, on electron scattering at a rising number of lattice defects in a particle upon growth of its temperature, and subsequent melting as a major cause for the observed plasmonic suppression. It is emphasized that observed effect is fully reversible and may underlie nonlinear optical responses of nanocolloids and composite materials containing plasmonic nanoparticles and their aggregates in conditions of local heating and in general, manifest itself in a wide range of plasmonics phenomena associated with strong heating of nanoparticles. © 2016 Optical Society of America.

Scopus,
Смотреть статью

Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarskz, Russian Federation
Division of Theoretical Chemistry and Biology, Royal Institute of Technology, Stockholm, Sweden

Доп.точки доступа:
Gerasimov, V. S.; Ershov, A. E.; Gavrilyuk, A. P.; Karpov, S. V.; Agren, H.; Polyutov, S. P.

    Restructuring of plasmonic nanoparticle aggregates with arbitrary particle size distribution in pulsed laser fields
/ A. E. Ershov [et al.] // Chin. Phys. - 2016. - Vol. 25, Is. 11, DOI 10.1088/1674-1056/25/11/117806 . - ISSN 1674-1056
Аннотация: We have studied processes of interaction of pulsed laser radiation with resonant groups of plasmonic nanoparticles (resonant domains) in large colloidal nanoparticle aggregates having different interparticle gaps and particle size distributions. These processes are responsible for the origin of nonlinear optical effects and photochromic reactions in multiparticle aggregates. To describe photo-induced transformations in resonant domains and alterations in their absorption spectra remaining after the pulse action, we introduce the factor of spectral photomodification. Based on calculation of changes in thermodynamic, mechanical, and optical characteristics of the domains, the histograms of the spectrum photomodification factor have been obtained for various interparticle gaps, an average particle size, and the degree of polydispersity. Variations in spectra have been analyzed depending on the intensity of laser radiation and various combinations of size characteristics of domains. The obtained results can be used to predict manifestation of photochromic effects in composite materials containing different plasmonic nanoparticle aggregates in pulsed laser fields. © 2016 Chinese Physical Society and IOP Publishing Ltd.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Computational Modeling, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
L. V. Kirensky Institute of Physics of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ershov, A. E.; Gavrilyuk, A. P.; Karpov, S. V.; Polyutov, S. P.

    Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited]
/ V. S. Gerasimov [et al.] // Opt. Mater. Express. - 2017. - Vol. 7, Is. 2. - P555-568, DOI 10.1364/OME.7.000555 . - ISSN 2159-3930
Аннотация: We have studied light induced processes in nanocolloids and composite materials containing ordered and disordered aggregates of plasmonic nanoparticles accompanied by their strong heating. A universal comprehensive physical model that combines mechanical, electrodynamical, and thermal interactions at nanoscale has been developed as a tool for investigations. This model was used to gain deep insight on phenomena that take place in nanoparticle aggregates under high-intensity pulsed laser radiation resulting in the suppression of nanoparticle resonant properties. Verification of the model was carried out with single colloidal Au and Ag nanoparticles and their aggregates. © 2017 Optical Society of America.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Royal Institute of Technology, Stockholm, Sweden
The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Доп.точки доступа:
Gerasimov, V. S.; Ershov, A.E.; Ершов, Александр Евгеньевич; Karpov, S. V.; Gavrilyuk, A.P.; Гаврилюк, Анатолий Петрович; Zakomirnyi, V. I.; Rasskazov, I. L.; Agren, H.; Polyutov, S. P.

    Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited]: Publisher's note
/ V. S. Gerasimov [et al.] // Opt. Mater. Express. - 2017. - Vol. 7, Is. 3. - P799-799, DOI 10.1364/OME.7.000799 . - ISSN 2159-3930

Кл.слова (ненормированные):
Optical materials -- High intensity -- Plasmonic nanoparticle -- Pulsed-laser field -- Materials science

Аннотация: This publisher's note amends the author list of [Opt. Mater. Express 7, 5555 (2017)]. © 2017 Optical Society of America.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Royal Institute of Technology, Stockholm, Sweden
The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, Urbana, IL, United States

Доп.точки доступа:
Gerasimov, V. S.; Ershov, A.E.; Ершов, Александр Евгеньевич; Karpov, S. V.; Gavrilyuk, A.P.; Гаврилюк, Анатолий Петрович; Zakomirnyi, V. I.; Rasskazov, I. L.; Agren, H.; Polyutov, S. P.

    Surface plasmon resonances in liquid metal nanoparticles
/ A. E. Ershov [et al.] // Appl Phys B. - 2017. - Vol. 123, Is. 6, DOI 10.1007/s00340-017-6755-2 . - ISSN 0946-2171
Аннотация: We have shown significant suppression of resonant properties of metallic nanoparticles at the surface plasmon frequency during the phase transition “solid–liquid” in the basic materials of nanoplasmonics (Ag, Au). Using experimental values of the optical constants of liquid and solid metals, we have calculated nanoparticle plasmonic absorption spectra. The effect was demonstrated for single particles, dimers and trimers, as well as for the large multiparticle colloidal aggregates. Experimental verification was performed for single Au nanoparticles heated to the melting temperature and above up to full suppression of the surface plasmon resonance. It is emphasized that this effect may underlie the nonlinear optical response of composite materials containing plasmonic nanoparticles and their aggregates. © 2017, Springer-Verlag Berlin Heidelberg.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
Siberian State University of Science and Technologies, Krasnoyarsk, Russian Federation
L.V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ershov, A. E.; Gerasimov, V. S.; Gavrilyuk, A. P.; Karpov, S. V.

    Titanium nitride as light trapping plasmonic material in silicon solar cell
/ N. Venugopal [et al.] // Opt Mater. - 2017. - Vol. 72. - P397-402, DOI 10.1016/j.optmat.2017.06.035 . - ISSN 0925-3467

Кл.слова (ненормированные):
Photovoltaics -- Plasmonics -- Titanium nitride -- Absorption spectroscopy -- CMOS integrated circuits -- Efficiency -- Gold -- Metals -- MOS devices -- Nanoparticles -- Nanostructured materials -- Nitrides -- Optoelectronic devices -- Plasmons -- Semiconductor devices -- Silicon -- Silver -- Solar cells -- Solar power generation -- Thin film solar cells -- Thin films -- Time domain analysis -- Tin oxides -- Titanium -- Titanium compounds -- Titanium nitride -- Absorption enhancement -- Complementary metal oxide semiconductors -- Nanoparticle diameter -- Other opto-electronic devices -- Photovoltaics -- Plasmonic nanoparticle -- Plasmonics -- Thin-film silicon solar cells -- Silicon solar cells

Аннотация: Light trapping is a crucial prominence to improve the efficiency in thin film solar cells. However, last few years, plasmonic based thin film solar cells shows potential structure to improve efficiency in photovoltaics. In order to achieve the high efficiency in plasmonic based thin film solar cells, traditionally noble metals like Silver (Ag) and Gold (Au) are extensively used due to their ability to localize the light in nanoscale structures. In this paper, we numerically demonstrated the absorption enhancement due to the incorporation of novel plasmonic TiN nanoparticles on thin film Silicon Solar cells. Absorption enhancement significantly affected by TiN plasmonic nanoparticles on thin film silicon was studied using Finite-Difference-Time-Domain Method (FDTD). The optimal absorption enhancement 1.2 was achieved for TiN nanoparticles with the diameter of 100 nm. The results show that the plasmonic effect significantly dominant to achieve maximum absorption enhancement g(?) at longer wavelengths (red and near infrared) and as comparable with Au nanoparticle on thin film Silicon. The absorption enhancement can be tuned to the desired position of solar spectrum by adjusting the size of TiN nanoparticles. Effect of nanoparticle diameters on the absorption enhancement was also thoroughly analyzed. The numerically simulated results show that TiN can play the similar role as gold nanoparticles on thin film silicon solar cells. Furthermore, TiN plasmonic material is cheap, abundant and more Complementary Metal Oxide Semiconductor (CMOS) compatible material than traditional plasmonic metals like Ag and Au, which can be easy integration with other optoelectronic devices. © 2017 Elsevier B.V.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
L.V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Venugopal, N.; Gerasimov, V. S.; Ershov, A. E.; Karpov, S. V.; Polyutov, S. P.

    Refractory titanium nitride two-dimensional structures with extremely narrow surface lattice resonances at telecommunication wavelengths
/ V. I. Zakomirnyi [et al.] // Appl Phys Lett. - 2017. - Vol. 111, Is. 12, DOI 10.1063/1.5000726 . - ISSN 0003-6951
Аннотация: Regular arrays of plasmonic nanoparticles have brought significant attention over the last decade due to their ability to support localized surface plasmons (LSPs) and exhibit diffractive grating behavior simultaneously. For a specific set of parameters (i.e., period, particle shape, size, and material), it is possible to generate super-narrow surface lattice resonances (SLRs) that are caused by interference of the LSP and the grating Rayleigh anomaly. In this letter, we propose plasmonic structures based on regular 2D arrays of TiN nanodisks to generate high-Q SLRs in an important telecommunication range, which is quite difficult to achieve with conventional plasmonic materials. The position of the SLR peak can be tailored within the whole telecommunication bandwidth (from ? 1.26 ?m to ? 1.62 ?m) by varying the lattice period, while the Q-factor is controlled by changing nanodisk sizes. We show that the Q-factor of SLRs can reach a value of 2 ? 103, which is the highest reported Q-factor for SLRs at telecommunication wavelengths so far. Tunability of optical properties, refractory behavior, and low-cost fabrication of TiN nanoparticles paves the way for manufacturing cheap nanostructures with extremely stable and adjustable electromagnetic response at telecommunication wavelengths for a large number of applications. © 2017 Author(s).

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation
L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Zakomirnyi, V. I.; Rasskazov, I. L.; Gerasimov, V. S.; Ershov, A. E.; Polyutov, S. P.; Karpov, S. V.

    Titanium nitride nanoparticles as an alternative platform for plasmonic waveguides in the visible and telecommunication wavelength ranges
/ V. I. Zakomirnyi [et al.] // Photonics Nanostruc. Fundam. Appl. - 2018. - Vol. 30. - P50-56, DOI 10.1016/j.photonics.2018.04.005 . - ISSN 1569-4410
Аннотация: We propose to utilize titanium nitride (TiN) as an alternative material for linear periodic chains (LPCs) of nanoparticles (NPs) which support surface plasmon polariton (SPP) propagation. Dispersion and transmission properties of LPCs have been examined within the framework of the dipole approximation for NPs with various shapes: spheres, prolate and oblate spheroids. It is shown that LPCs of TiN NPs support high-Q eigenmodes for an SPP attenuation that is comparable with LPCs from conventional plasmonic materials such as Au or Ag, with the advantage that the refractory properties and cheap fabrication of TiN nanostructures are more preferable in practical implementations compared to Au and Ag. We show that the SPP decay in TiN LPCs remains almost the same even at extremely high temperatures which is impossible to reach with conventional plasmonic materials. Finally, we show that the bandwidth of TiN LPCs from non-spherical particles can be tuned from the visible to the telecommunication wavelength range by switching the SPP polarization, which is an attractive feature for integrating these structures into modern photonic devices. © 2018 Elsevier B.V.

Scopus,
Смотреть статью

Держатели документа:
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Zakomirnyi, V. I.; Rasskazov, I. L.; Gerasimov, V. S.; Ershov, A. E.; Polyutov, S. P.; Karpov, S. V.; Agren, H.

    Temperature dependent elastic repulsion of colloidal nanoparticles with a polymer adsorption layer
/ A. P. Gavrilyuk [et al.] // Colloid Polym. Sci. - 2018. - Vol. 296, Is. 10. - P1689-1697, DOI 10.1007/s00396-018-4383-y. - Cited References:49. - The reported research was funded by the Russian Foundation for Basic Research, the government of the Krasnoyarsk territory and Krasnoyarsk Regional Fund of Science, grant 18-42-243023, the RF Ministry of Science and Education, the State contract with Siberian Federal University for scientific research in 2017-2019, and SB RAS Program No II.2P (0358-2015-0010). . - ISSN 0303-402X. - ISSN 1435-1536
РУБ Chemistry, Physical + Polymer Science

Аннотация: The model of pairwise elastic repulsion of contacting colloidal nanoparticles with a rigid core and deformable shell is discussed. A simple analytical equation is applied for the energy of elastic repulsion of nanoparticles with arbitrary sizes and the elasticity moduli of self-healing polymer adsorption layers. The model is based on the representation of the absorption layer as a continuous medium that is elastically deformed upon the contact of nanoparticles. The major characteristic of this medium is the elasticity modulus. The magnitude of the elasticity modulus is determined from the condition of balance of the van der Waals attractive forces of nanoparticles and the elastic repulsion of their adsorption layers in the contact area, taking into account the temperature variations. We employed the kinetic approach to describe the dependence of the elasticity modulus on both the temperature and the rate of its change.

WOS,
Смотреть статью,
Scopus

Держатели документа:
RAS, SB, Inst Computat Modeling, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Math & Comp Sci, Krasnoyarsk 660041, Russia.
Siberian Fed Univ, Lab Nanotechnol Spect & Quantum Chem, Krasnoyarsk 660041, Russia.
RAS, SB, Fed Res Ctr KSC, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Siberian State Univ Sci & Technol, Krasnoyarsk 660014, Russia.

Доп.точки доступа:
Gavrilyuk, Anatoly P.; Gerasimov, Valeriy S.; Ershov, Alexander E.; Karpov, Sergey V.; Russian Foundation for Basic Research; government of the Krasnoyarsk territory and Krasnoyarsk Regional Fund of Science [18-42-243023]; RF Ministry of Science and Education,; State contract with Siberian Federal University for scientific research in 2017-2019; SB RAS Program [II.2P (0358-2015-0010)]

    Engineering mode hybridization in regular arrays of plasmonic nanoparticles embedded in 1D photonic crystal
/ V. S. Gerasimov [et al.] // J. Quant. Spectrosc. Radiat. Transf. - 2019. - Vol. 224. - P303-308, DOI 10.1016/j.jqsrt.2018.11.028 . - ISSN 0022-4073
Аннотация: We analytically and numerically study coupling mechanisms between 1D photonic crystal (PhC) and 2D array of plasmonic nanoparticles (NPs) embedded in its defect layer. We introduce general formalism to explain and predict the emergence of PhC-mediated Wood–Rayleigh anomalies, which spectral positions agree well with the results of exact simulations with Finite-Difference Time-Domain (FDTD) method. Electromagnetic coupling between localized surface plasmon resonance (LSPR) and PhC-mediated Wood–Rayleigh anomalies makes it possible to efficiently tailor PhC modes. The understanding of coupling mechanisms in such hybrid system paves a way for optimal design of sensors, light absorbers, modulators and other types of modern photonic devices with controllable optical properties. © 2018 Elsevier Ltd

Scopus,
Смотреть статью

Держатели документа:
Institute of Computational Modeling SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Federal Siberian Research Clinical Centre under FMBA of Russia, Krasnoyarsk, 660037, Russian Federation
Polytechnic Institute, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
The Institute of Optics, University of Rochester, Rochester, NY 14627, United States
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, 660014, Russian Federation

Доп.точки доступа:
Gerasimov, V. S.; Ershov, A. E.; Bikbaev, R. G.; Rasskazov, I. L.; Timofeev, I. V.; Polyutov, S. P.; Karpov, S. V.
535.015
П 84

    ПРОЯВЛЕНИЕ ДОПОЛНИТЕЛЬНЫХ АНОМАЛИЙ РЭЛЕЯ В ПЕРИОДИЧЕСКИХ МАССИВАХ ПЛАЗМОННЫХ НАНОЧАСТИЦ, ВНЕДРЕННЫХ В ОДНОМЕРНЫЙ ФОТОННЫЙ КРИСТАЛЛ
[Текст] : статья / В. С. Герасимов [и др.] // Решетневские чтения. - 2018. - Т. 1, № 22. - С. 522-524 . - ISSN 1990-7702
   Перевод заглавия: THE MANIFESTATION OF ADDITIONAL RAYLEIGH ANOMALIES IN PERIODIC PLASMONIC ARRAYS EMBEDDED INTO A ONE-DIMENSIONAL PHOTONIC CRYSTAL
УДК

Аннотация: Представлена модель, описывающая взаимодействие мод 1D ФК с 2D решеткой плазмонных наночастиц, внедренной в его дефектный слой, для разработки оптических сенсоров, модуляторов и лимитеров, используемых в сложных спутниковых системах.
We introduce analytical model, which describe the interaction between 1D photonic crystal and 2D array of plasmonic nanoparticles embedded in its defect layer for optimal design of sensors, light limiters, modulators for use in complex satellite systems.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН
Институт оптики, Рочестерский университет
Институт физики имени Л. В. Киренского СО РАН
Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева
Сибирский федеральный университет

Доп.точки доступа:
Герасимов, В.С.; Gerasimov V.S.; Ершов, А.Е.; Ershov A.E.; Бикбаев, Р.Г.; Bikbaev R.G.; Рассказов, И.Л.; Rasskazov I.L.; Карпов, С.В.; Karpov S.V.
535.8; 544.77.03
Ф 81

    ФОТОХРОМНЫЕ ЭФФЕКТЫ В КОМПОЗИТНЫХ СРЕДАХ, СОДЕРЖАЩИХ АГРЕГАТЫ ПЛАЗМОННЫХ НАНОЧАСТИЦ В ИМПУЛЬСНЫХ ЛАЗЕРНЫХ ПОЛЯХ
[Текст] : статья / А. Е. Ершов [и др.] // Решетневские чтения. - 2018. - Т. 1, № 22. - С. 527-528 . - ISSN 1990-7702
   Перевод заглавия: PHOTOCHROMIC EFFECTS IN COMPOSITE MEDIA WITH PLASMONIC NANOPARTICLE AGGREGATES IN PULSED LASER FIELDS
УДК

Аннотация: Разработана модель фотомодификации агрегатов плазмонных наночастиц. Модель может использоваться при разработке элементов памяти и оптических интегральных микросхем нового поколения в сложных спутниковых системах.
A model of photomodification of plasmonic nanoparticle aggregates is developed. The model can be used in fabrication of the memory elements and optical integrated circuits of new generation for complex satellite systems.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН
Институт физики имени Л. В. Киренского СО РАН
Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева
Сибирский федеральный университет

Доп.точки доступа:
Ершов, А.Е.; Ershov A.E.; Гаврилюк, А.П.; Gavrilyuk A.P.; Герасимов, В.С.; Gerasimov V.S.; Карпов, С.В.; Karpov S.V.