Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 1

    Super-efficient laser hyperthermia of malignant cells with core-shell nanoparticles based on alternative plasmonic materials
/ A. S. Kostyukov [et al.] // J. Quant. Spectrosc. Radiat. Transf. - 2019. - Vol. 236. - Ст. 106599, DOI 10.1016/j.jqsrt.2019.106599 . - ISSN 0022-4073

Кл.слова (ненормированные):
Conducting oxides -- Nanoparticle -- Nanoshell -- Plasmonic photothermal therapy -- Aluminum oxide -- Core shell nanoparticles -- Efficiency -- Gallium compounds -- II-VI semiconductors -- Nanoparticles -- Nanoshells -- Nanostructured materials -- Optical films -- Plasmonics -- Pulsed lasers -- Shells (structures) -- Silica -- Specific heat -- Transparent conducting oxides -- Zinc oxide -- Aluminum-doped zinc oxide -- Comparative studies -- Conducting oxides -- Gallium doped zinc oxides -- Nanoshell -- Orders of magnitude -- Photothermal therapy -- Spatial localization -- Plasmonic nanoparticles -- aluminum -- cell -- comparative study -- gold -- nanoparticle -- oxide -- zinc

Аннотация: New type of highly absorbing core-shell AZO/Au (aluminum doped zinc oxide/gold) and GZO/Au (gallium doped zinc oxide/gold) nanoparticles have been proposed for hyperthermia of malignant cells purposes. Comparative studies of pulsed laser hyperthermia were performed for Au nanoshells with AZO core and traditional SiO2 (quartz) core. We show that under the same conditions, the hyperthermia efficiency in the case of AZO increases by several orders of magnitude compared to SiO2 due to low heat capacity of AZO. Similar results have been obtained for GZO core which has same heat capacity. Calculations for pico-, nano- and sub-microsecond pulses demonstrate that reduced pulse duration results in strong spatial localization of overheated areas around nanoparticles, which ensures the absence of negative effects to the normal tissue. Moreover, we propose new alternative way for the optimization of hyperthermia efficiency: instead of maximizing the absorption of nanoparticles, we enhance the thermal damage effect on the membrane of malignant cell. This strategy allows to find the parameters of nanoparticle and the incident radiation for the most effective therapy. © 2019 Elsevier Ltd

Scopus,
Смотреть статью

Держатели документа:
Siberian Federal UniversityKrasnoyarsk, Russian Federation
Institute of Computational Modeling SB RASKrasnoyarsk, Russian Federation
Siberian State University of Science and TechnologyKrasnoyarsk, Russian Federation
The Institute of Optics, University of RochesterNY, United States
Kirensky Institute of Physics, Federal Research Center KSC SB RASKrasnoyarsk, Russian Federation

Доп.точки доступа:
Kostyukov, A. S.; Ershov, A. E.; Gerasimov, V. S.; Filimonov, S. A.; Rasskazov, I. L.; Karpov, S. V.