Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 16

    Liquid entrainment by gas flow along the interface of a liquid bridge
[Text] : статья / Y. Gaponenko, A. Mialdun, V. Shevtsova // The European Physical Journal Special Topics. - 2011. - Vol. 192, Iss. 1. - p. 63-70, DOI 10.1140/epjst/e2011-01360-0 . - ISSN 1951-6355

Аннотация: We report the results of numerical and experimental studies of two-phase flows in an annulus. The geometry corresponds to a cylindrical liquid column co-axially placed into an outer cylinder with solid walls. Gas enters into the annular duct and entrains the initially quiescent liquid. The internal column consists of solid rods at the bottom and top, while the central part is a liquid bridge from a viscous liquid and kept in its position by surface tension. Silicone oil 5cSt was used as a test liquid and air and nitrogen as gases. An original numerical approach was developed to study the problem in complex geometry. The flow structure in the liquid is analyzed for a wide range of gas flow rates.

Полный текст на сайте правообладателя


Доп.точки доступа:
Mialdun, A.; Shevtsova, V.; Гапоненко, Юрий Анатольевич

    Plants rhizospheric organisms interaction in a manmade system with and without biogenous element limitation
[Text] / L. A. Somova [et al.] // LIFE SCIENCES: LIFE SUPPORT SYSTEMS STUDIES-I. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON PRESS LTD, 1997. - Vol. 20: F4.6, F4.8, F4.2 and F4.9 Symposia of COSPAR Scientific Commission F on Life Sciences - Life Support System Studies-I, at the 31st COSPAR Scientific Assembly (JUL 14-SEP 21, 1996, BIRMINGHAM, ENGLAND), Is. 10. - P1939-1943, DOI 10.1016/S0273-1177(97)00629-7. - Cited References: 7 . - ISBN 0273-1177. - ISBN 0-08-043307-3
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: The effect has been studied of inoculation of seeds of wheat with two species of rhizospheric microorganisms, Pseudomonas fluorescens and Pseudomonas putida - on young plant growth with complete and with nitrogen deficit mineral nutrition. With complete mineral medium, plants grown from seeds inoculated with bacteria of Pseudomonas genus (experiment plants) have been found to have better growth over plants not inoculated with these bacteria (control plants). The experiment plants had increased transpiration and their biomass had higher organic nitrogen content. With nitrogen deficit medium, the plants inoculated with bacteria and those without them, have not revealed changes in growth. Neither case demonstrated competition of microorganisms with plants for nitrogen sources. (C) 1997 COSPAR. Published by Elsevier Science Ltd.

WOS

Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 6600036, Russia
CEA Cadarache, DEVM, F-13108 St Paul Durance, France
Russian Acad Sci, Ctr Comp, Siberian Branch, Krasnoyarsk 6600036, Russia
ИБФ СО РАН
ИВМ СО РАН

Доп.точки доступа:
Somova, L.A.; Pechurkin, N.S.; Polonsky, V.I.; Pisman, T.I.; Sarangova, A.B.; Andre, M.; Sadovskaya, G.M.; Садовская, Галина Михайловна

    Influence of rhizosphere bacteria of the genus Pseudomonas on the growth of wheat seedlings under conditions of complete mineral supply and nitrogen deficiency
[Text] / N. S. Pechurkin [et al.] // Microbiology. - 1997. - Vol. 66, Is. 4. - P461-465. - Cited References: 9 . - ISSN 0026-2617
РУБ Microbiology

Кл.слова (ненормированные):
Pseudomonas -- wheat -- nitrogen -- growth -- biomass -- transpiration -- Biomass -- Growth -- Nitrogen -- Pseudomonas -- Transpiration -- Wheat

Аннотация: The influence of two rhizosphere bacteria-Pseudomonas fluorescens and Pseudomonas putida-on the growth of wheat seedlings was studied under conditions of complete mineral supply and nitrogen deficiency in the medium. On complete mineral medium, the plants that developed from the seeds inoculated with the pseudomonads had some advantages for growth over those developed from the non-inoculated seeds. Inoculated plants showed an increased transpiration and a higher content of organic nitrogen in their biomass. Under conditions of nitrogen deficiency in the medium, no differences were found between inoculated and noninoculated plants. No competition for the nitrogen sources was revealed between the bacteria and plants; the development of the rhizosphere bacteria was limited by the rate of organic compound excretion by plant roots. The stimulatory effect produced on plant growth by the rhizosphere bacteria was shown to vary depending on the environmental factors.

WOS,
Scopus

Держатели документа:
RUSSIAN ACAD SCI,CTR COMP,KRASNOYARSK,RUSSIA
ИВМ СО РАН
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
State Agrarian University, Russian Federation
Computing Center, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Pechurkin, N.S.; Somova, L.A.; Polonskii, V.I.; Pisman, T.I.; Sarangova, A.B.; Polonskaya, D.E.; Sadovskaya, G.M.; Садовская, Галина Михайловна

    Influence of rhizosphere bacteria of the genus pseudomonas on the growth of wheat seedlings under conditions of complete mineral supply and nitrogen deficiency
/ N. S. Pechurkin [et al.] // Mikrobiologiya. - 1997. - Vol. 66, Is. 4. - P553-557 . - ISSN 0026-3656

Кл.слова (ненормированные):
Biomass -- Growth -- Nitrogen -- Pseudomonas -- Transpiration -- Wheat

Аннотация: The influence of two rhizosphere bacteria-Pseudomonas fluorescens and Pseudomonas putidaon the growth of wheat seedlings was studied under conditions of complete mineral supply and nitrogen deficiency in the medium. On complete mineral medium, the plants that developed from the seeds inoculated with the pseudomonads had some advantages for growth over those developed from the non-inoculated seeds. Inoculated plants showed an increased transpiration and a higher content of organic nitrogen in their biomass. Under conditions of nitrogen deficiency in the medium, no differences were found between inoculated and noninoculated plants. No competition for the nitrogen sources was revealed between the bacteria and plants; the development of the rhizosphere bacteria was limited by the rate of organic compound excretion by plant roots. The stimulatory effect produced on plant growth by the rhizosphere bacteria was shown to vary depending on the environmental factors.

Scopus

Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
State Agricultural University, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Computing Center, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
ИВМ СО РАН
ИБФ СО РАН

Доп.точки доступа:
Pechurkin, N.S.; Somova, L.A.; Polonskii, V.I.; Pis'man, T.I.; Sarangova, A.B.; Polonskaya, D.E.; Sadovskaya, G.M.; Садовская, Галина Михайловна

    Plants-rhizospheric organisms interaction in a manmade system with and without biogenous element limitation
/ L. A. Somova [et al.] // Advances in Space Research. - 1997. - Vol. 20, Is. 10. - P1939-1943 . - ISSN 0273-1177
Аннотация: The effect has been studied of inoculation of seeds of wheat with two species of rhizospheric microorganisms, -Pseudomonas fluorescens and Pseudomonas putida - on young plant growth with complete and with nitrogen deficit mineral nutrition. With complete mineral medium, plants grown from seeds inoculated with bacteria of Pseudomonas genus (experiment plants) have been found to have better growth over plants not inoculated with these bacteria (control plants). The experiment plants had increased transpiration and their biomass had higher organic nitrogen content. With nitrogen deficit medium, the plants inoculated with bacteria and those without them, have not revealed changes in growth. Neither case demonstrated competition of microorganisms with plants for nitrogen sources. В© 1997 COSPAR. Published by Elsevier Science Ltd.

Scopus

Держатели документа:
Institute of Biophysics, Krasnoyarsk 6600036, Russian Federation
CEA-Sciences du Vivant, DEVM, CEA/Cadarache, Saint-Paul-Lez-Durance Cedex, France
Computing Center Russian, Krasnoyarsk 6600036, Russian Federation
ИВМ СО РАН
ИБФ СО РАН

Доп.точки доступа:
Somova, L.A.; Pechurkin, N.S.; Polonsky, V.I.; Pisman, T.I.; Sarangova, A.B.; Andre, M.; Sadovskaya, G.M.; Садовская, Галина Михайловна

    Stability of exact solutions describing two-layer flows with evaporation at the interface
/ V. B. Bekezhanova, O. N. Goncharova // Fluid Dyn. Res. - 2016. - Vol. 48, Is. 6, DOI 10.1088/0169-5983/48/6/061408 . - ISSN 0169-5983
Аннотация: A new exact solution of the equations of free convection has been constructed in the framework of the Oberbeck-Boussinesq approximation of the Navier-Stokes equations. The solution describes the joint flow of an evaporating viscous heat-conducting liquid and gas-vapor mixture in a horizontal channel. In the gas phase the Dufour and Soret effects are taken into account. The consideration of the exact solution allows one to describe different classes of flows depending on the values of the problem parameters and boundary conditions for the vapor concentration. A classification of solutions and results of the solution analysis are presented. The effects of the external disturbing influences (of the liquid flow rates and longitudinal gradients of temperature on the channel walls) on the stability characteristics have been numerically studied for the system HFE7100-nitrogen in the common case, when the longitudinal temperature gradients on the boundaries of the channel are not equal. In the system both monotonic and oscillatory modes can be formed, which damp or grow depending on the values of the initial perturbations, flow rates and temperature gradients. Hydrodynamic perturbations are most dangerous under large gas flow rates. The increasing oscillatory perturbations are developed due to the thermocapillary effect under large longitudinal gradients of temperature. The typical forms of the disturbances are shown. © 2016 The Japan Society of Fluid Mechanics and IOP Publishing Ltd.

Scopus,
Смотреть статью

Держатели документа:
Institute of Computational Modelling SB RAS, 50/44 Krasnoyarsk, Akademgorodok, Russian Federation
Institute of Mathematics and Computer Science, Siberian Federal University, Svobodny 79, Krasnoyarsk, Russian Federation
Altai State University, Lenina 61, Barnaul, Russian Federation
Institute of Thermophysics, SB RAS, Lavrentyev 1, Novosibirsk, Russian Federation

Доп.точки доступа:
Bekezhanova, V. B.; Goncharova, O. N.

    Preparation and ionic selectivity of carbon-coated alumina nanofiber membranes
/ D. V. Lebedev [et al.] // Pet. Chem. - 2017. - Vol. 57, Is. 4. - P306-317, DOI 10.1134/S096554411704003X. - Cited References:52. - This work was supported by the Russian Science Foundation, grant no. 15-19-10017. Instrumental analysis of the materials was performed in the Shared Equipment Center at the Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy Sciences. . - ISSN 0965-5441. - ISSN 1555-6239
РУБ Chemistry, Organic + Chemistry, Physical + Energy & Fuels + Engineering,

Аннотация: A novel type of ion-selective membranes based on Nafen(TM) alumina nanofibers coated with carbon is proposed. The membranes are produced by filtration of a Nafen nanofiber suspension through a porous support followed by drying and sintering. A thin carbon layer (up to 2 nm) is deposited on the nanofibers by chemical vapor deposition (CVD). Its formation is confirmed by the results of Raman spectroscopy and visually observed in TEM images. According to low temperature nitrogen adsorption experiments, the formation of carbon layer leads to decreasing pore size (the maximum of pore size distribution shifts from 28 to 16 nm) and the corresponding decrease of porosity (from 75 to 62%) and specific surface area (from 146 to 107 m(2)g(-1)). The measurement of membrane potential in an electrochemical cell has shown that the deposition of carbon on the membrane results in high ionic selectivity. In an aqueous KCl solution, the membranes display high anion selectivity with anion and cation transference numbers of 0.94 and 0.06, respectively. The fixed-charge density of membrane has been determined by fitting the experimental data using the Teorell-Meyer-Sievers model. It has been found that the membrane fixed-charge density increases with increasing electrolyte concentration. Possible applications of the membranes produced include nanofiltration, ultrafiltration, and separation of charged species in mixtures. The formation of a conductive carbon layer on the pore surface can be employed for fabricating membranes with switchable ion-transport selectivity.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk, Russia.
Russian Acad Sci, Siberian Branch, Mol Elect Dept, Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia.
Natl Res Univ Elect Technology MIET, Moscow, Russia.
Russian Acad Sci, Siberian Branch, Inst Chem & Chem Technol, Krasnoyarsk, Russia.

Доп.точки доступа:
Lebedev, D.V.; Лебедев Д.В.; Shiverskiy, A. V.; Simunin, M. M.; Solodovnichenko, V.S.; Солодовниченко В.С.; Parfenov, V. A.; Bykanova, V. V.; Khartov, S. V.; Ryzhkov, I.I.; Рыжков, Илья Игоревич; Russian Science Foundation [15-19-10017]

    Синтез мембран на основе нановолокон оксида алюминия и исследование их ионной селективности
[Текст] : статья / Д. В. Лебедев [и др.] // Мембраны и мембранные технологии. - 2017. - Т. 7, № 2. - С. 86-98, DOI 10.1134/S2218117217020031 . - ISSN 2218-1172

Аннотация: Предложен новый тип керамических мембран с ионной селективностью на основе нановолокон оксида алюминия (NafenTM), покрытых слоем углерода. Синтез мембран осуществляется методом вакуумной фильтрации коллоидного раствора волокон Nafen с последующим термическим отжигом и нанесением углеродного слоя методом химического осаждения из газовой фазы (chemical vapor deposition, CVD). Данные просвечивающей электронной микроскопии и спектроскопии комбинационного рассеяния подтверждают формирование углеродного слоя толщиной до 2 нм на нановолокнах. По данным низкотемпературной адсорбции азота, это приводит к уменьшению размера пор (максимум функции распределения смещается от 28 к 16 нм) и соответственному снижению пористости (с 75 до 62%) и удельной поверхности мембраны (с 146 до 107 м2 г–1). С помощью потенциометрического метода установлено, что нанесение углеродного слоя на мембраны из волокон Nafen придает им выраженные ионоселективные свойства. Измерения в водном растворе KCl показали, что полученные мембраны являются анион-селективными с числами переноса 0.94 для аниона и 0.06 для катиона. Определена плотность фиксированного заряда мембран путем аппроксимации экспериментальных данных моделью Теорелла–Мейера–Сиверса. Показано, что плотность заряда возрастает с увеличением концентрации электролита. Полученные мембраны могут быть применены в области нано- и ультрафильтрации, а также для разделения заряженных компонентов смесей. Нанесение проводящего углеродного слоя на поверхность пор является перспективным для создания мембран с управляемой ионной селективностью.
A novel type of ion-selective membranes based on NafenTM alumina nanofibers covered with carbon is proposed. The membranes are produced by filtration of Nafen nanofiber suspension through a porous support followed by drying and sintering. A thin carbon layer (up to 2 nm) is deposited on the nanofibers with the help of chemical vapor deposition (CVD). Its formation is confirmed by the results of Raman spectroscopy and visually observed in TEM images. According to low temperature nitrogen adsorption experiments, the formation of carbon layer leads to decreasing pore size (the maximum of pore size distribution shifts from 28 to 16 nm) and the corresponding decrease of porosity (from 75 to 62%) and specific surface area (from 146 to 107 m2 g–1). The measurement of membrane potential in an electrochemical cell shows that the deposition of carbon on the membrane results in high ionic selectivity. In an aqueous KCl solution, the membranes display high anion–selectivity with transference numbers 0.94 for anion and 0.06 for cation. The fixed charge density of membrane is determined by fitting the experimental data with the help of Teorell–Meyer–Sievers model. It is found that the density of fixed membrane charge increases with increasing the electrolyte concentration. The potential applications of produced membranes include nano- and ultrafiltration as well as separation of charged species in mixtures. The formation of conductive carbon layer on the pore surface can be employed for producing membranes with switchable ion-transport selectivity. Keywords: alumina nanofiber, membrane, chemical vapor deposition, carbon, membrane potential measurement, ionic permselectivity, Teorell–Meyer–Sievers model

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН, Академгородок 50-44, Красноярск, Россия
Институт химии и химической технологии СО РАН, Академгородок 50-24, Красноярск, Россия
Красноярский научный центр СО РАН, Академгородок 50, Красноярск, Россия
Национальный исследовательский университет “МИЭТ”, Площадь Шокина, 1, Зеленоград, Москва, Россия

Доп.точки доступа:
Лебедев, Д.В.; Шиверский, А.В.; Симунин, М.М.; Солодовниченко, В.С.; Парфенов, В.А.; Быканова, В.В.; Хартов, С.В.; Рыжков, И.И.

    Experimental and modelling study of ionic selectivity in carbon coated alumina nanofiber membranes
/ I. I. Ryzhkov [et al.] // Chemical Engineering Transactions : Italian Association of Chemical Engineering - AIDIC, 2017. - Vol. 60. - P253-258, DOI 10.3303/CET1760043 . -
Аннотация: A novel type of ion-selective membranes, which combine the advantages of ceramic nanofibrous media with good electrical conductivity, is proposed. The membranes are produced from Nafen alumina nanofibers (diameter around 10 nm) by filtration of nanofiber suspension through a porous support followed by drying and sintering. Electrical conductivity is achieved by depositing a thin carbon layer on the nanofibers by CVD. Raman spectroscopy and TEM are used to confirm the carbon structure formation. The average pore size determined by low temperature nitrogen adsorption experiments lies in the range 15-30 nm. Measurements of membrane potential show that the carbon coated membranes acquire high ionic selectivity (transference numbers 0.94 for anion and 0.06 for cation in aqueous KCl). The fixed membrane charge is determined by fitting the experimental data to Teorell-Meyer-Sievers and Space-charge models. © 2017, AIDIC Servizi S.r.l.

Scopus,
Смотреть статью

Держатели документа:
Institute of Computational Modelling SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russian Federation
Molecular Electronics Department KSC SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russian Federation
National Research University of Electronic Technology, MIET, Shokin square 1, Zelenograd, Moscow, Russian Federation
Institute of Chemistry and Chemical Technology SB RAS, Akademgorodok 50-24, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ryzhkov, I. I.; Lebedev, D. V.; Solodovnichenko, V. S.; Shiverskiy, A. V.; Simunin, M. M.; Parfenov, V. A.

    Study of the convective fluid flows with evaporation on the basis of the exact solution in a three-dimensional infinite channel
/ V. B. Bekezhanova, O. N. Goncharova // J. Phys. Conf. Ser. - 2017. - Vol. 899, Is. 3, DOI 10.1088/1742-6596/899/3/032006 . - ISSN 1742-6588
Аннотация: The solution of special type of the Boussinesq approximation of the Navier - Stokes equations is used to simulate the two-layer evaporative fluid flows. This solution is the 3D generalization of the Ostroumov - Birikh solution of the equations of free convection. Modeling of the 3D fluid flows is performed in an infinite channel of the rectangular cross section without assumption of the axis-symmetrical character of the flows. Influence of gravity and evaporation on the dynamic and thermal phenomena in the system is studied. The fluid flow patterns are determined by various thermal, mechanical and structural effects. Numerical investigations are performed for the liquid - gas system like ethanol - nitrogen and HFE-7100 - nitrogen under conditions of normal and low gravity. The solution allows one to describe a formation of the thermocapillary rolls and multi-vortex structures in the system. Alteration of topology and character of the flows takes place with change of the intensity of the applied thermal load, thermophysical properties of working media and gravity action. Flows with translational, translational-rotational or partially reverse motion can be formed in the system. © Published under licence by IOP Publishing Ltd.

Scopus,
Смотреть статью,
Полный текст (доступен только в ЛВС)

Держатели документа:
Institute of Computational Modeling SB RAS, Academgorodok 50/44, Krasnoyarsk, Russian Federation
Institute of Thermophysics SB RAS, Ac. Lavrentieva ave 1, Novosibirsk, Russian Federation
Altai State University, pr Lenina 61, Barnaul, Russian Federation

Доп.точки доступа:
Bekezhanova, V. B.; Goncharova, O. N.

    Influence of a coaxial gas flow on the evolution of oscillatory states in a liquid bridge
/ V. Yasnou [et al.] // Int. J. Heat Mass Transf. - 2018. - Vol. 123. - P747-759, DOI 10.1016/j.ijheatmasstransfer.2018.03.016 . - ISSN 0017-9310

Кл.слова (ненормированные):
Instability -- Liquid bridge -- Non-linear dynamics -- Thermocapillary convection -- Two-phase flow

Аннотация: We present an experimental and complementary computational study of a two-phase flow in a liquid bridge that develops under the action of buoyant and Marangoni forces in the presence of a gas stream parallel to the interface. The gas flow is counter-directed with respect to the steady flow in liquid. The forced gas flow along the interface provides actions on the system via shear stresses and heat exchange. For the experimental fluids (n-decane, nitrogen) the ratio of viscosities is large, about 40, and the gas Reynolds number is moderate, Reg = 120. Thus, heat transfer is the prevailing mechanism by which gas affects the flow in a liquid. The effect of gas temperature on the evolution of flow states is examined. The study reveals that in the supercritical region, ?T>1.25?Tcr, the flow dynamics can be divided in three regimes relative to the gas temperature. When the gas is colder than the temperature of the supporting disk, multiple transitions between the oscillatory states occur: periodic, quasi-periodic with two frequencies, quasi-periodic with three frequencies and noisy quasi-periodic with three frequencies. In the case, when the gas temperature approaches the temperature of the cold disk and goes up to the mean temperature, the flow remains periodic up to the largest tested ?T. In the case of hotter gas, the flow also remains periodic far above the threshold of hydrothermal instability, but the azimuthal mode of the periodic oscillatory flow is changed. The stability window is found to exist between these two azimuthal modes and its location is sensitive to the gas parameters as well as to the geometry of a liquid bridge. It opens a possibility that oscillatory instability can be stabilized by choosing specific temperatures and velocities of counter-current gas. © 2018 Elsevier Ltd

Scopus,
Смотреть статью

Держатели документа:
MRC, CP-165/62, Universite libre de Bruxelles (ULB), 50, Ave. F.D. Roosevelt, Brussels, Belgium
Institute of Computational Modelling, SB RAS, Akademgorodok 50, str. 44, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Yasnou, V.; Gaponenko, Y.; Mialdun, A.; Shevtsova, V.

    Modeling of three dimensional thermocapillary flows with evaporation at the interface based on the solutions of a special type of the convection equations
/ V. B. Bekezhanova, O. N. Goncharova // Appl. Math. Model. - 2018. - Vol. 62. - P145-162, DOI 10.1016/j.apm.2018.05.021 . - ISSN 0307-904X
Аннотация: Theoretical and numerical study of the convection processes, which are accompanied by evaporation/condensation, in the framework of new non-standard problem is largely motivated by new physical experiments. One of the principal questions is to understand the character and to evaluate the degree of influence of particular factors or their combined action on the structure of the joint flows of liquid and gas-vapor mixture. The flow topology is determined by four main mechanisms: natural and thermocapillary convection, tangential stresses and mass transfer due to evaporation at the interface. The mathematical modeling of the fluid flows in an infinite channel with a rectangular cross section is carried out on the basis of the solution of a special type of the convection equations. The effects of thermodiffusion and diffusive thermal conductivity in the gas phase and evaporation at the thermocapillary interface are taken into consideration. Numerical investigations are performed for the liquid – gas (ethanol – nitrogen) system under normal and low gravity. The fluid flows are characterized as translational and progressively rotational motions and can be realized in various forms. © 2018 Elsevier Inc.

Scopus,
Смотреть статью

Держатели документа:
Institute of Computational Modeling SB RAS, Akademgorodok 50/44, Krasnoyarsk, Russian Federation
Institute of Thermophysics SB RAS, Ac. Lavrentieva ave 1, Novosibirsk, Russian Federation
Altai State University, pr Lenina 61, Barnaul, Russian Federation

Доп.точки доступа:
Bekezhanova, V. B.; Goncharova, O. N.

    Coupled thermal analysis of carbon layers deposited on alumina nanofibres
/ V. S. Solodovnichenko [et al.] // Thermochim. Acta. - 2019. - Vol. 675. - P164-171, DOI 10.1016/j.tca.2019.02.012. - Cited References:50. - The work is supported by the Russian Foundation for Basic Research Grant no. 18-29-19078. The physicochemical analysis of materials was carried out on equipment of Krasnoyarsk Scientific Center of Shared Facilities SB RAS. . - ISSN 0040-6031. - ISSN 1872-762X
РУБ Thermodynamics + Chemistry, Analytical + Chemistry, Physical

Аннотация: Catalyst-free chemical vapor deposition is used to form thin (1-2 nm) carbon layers on the surface of alumina nanofibers resulting in carbon-alumina nanocomposites. Thermal analysis, X-ray fluorescent microanalysis, Raman spectroscopy, and electrical resistance measurements of these composites show that increasing of synthesis time not only increases the amount of carbon on alumina surface, but also the ordering and density of the carbon layers. Nitrogen adsorption data reveal the decrease of total pore volume with increasing the synthesis time. The obtained composite material could be employed for the preparation of ion-selective membranes with switchable ion transport, electroconductive ceramics, and electrochemical sensors.

WOS,
Смотреть статью,
Scopus,
РИНЦ

Держатели документа:
Fed Res Ctr KSC SB RAS, Inst Computat Modelling SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russia.
Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia.
St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia.
Fed Res Ctr KSC SB RAS, Akademgorodok 50, Krasnoyarsk, Russia.
Natl Res Univ Elect Technol, MIST, Shokin Sq 1, Moscow, Russia.
Fed Res Ctr KSC SB RAS, Inst Chem & Chem Technol, Akademgorodok 50-24, Krasnoyarsk, Russia.

Доп.точки доступа:
Solodovnichenko, Vera S.; Simunin, Mikhail M.; Lebedev, Denis, V; Voronin, Anton S.; Emelianov, Aleksei, V; Mikhlin, Yuri L.; Parfenov, Vladimir A.; Ryzhkov, Ilya I.; Russian Foundation for Basic Research Grant [18-29-19078]

    Transit Lyman-alpha signatures of terrestrial planets in the habitable zones of M dwarfs
/ K. G. Kislyakova [et al.] // Astron. Astrophys. - 2019. - Vol. 623. - Ст. A131, DOI 10.1051/0004-6361/201833941. - Cited References:89. - We acknowledge the support by the Austria Science Fund (FWF) NFN project S116-N16 and the subprojects S11607-N16, S11606-N16 and S11604-N16. P.O., H.L., and N.V.E. acknowledge support from the Austrian Science Fund (FWF) project P25256-N27 "Characterizing Stellar and Exoplanetary Environments via Modeling of Lyman-alpha Transit Observations of Hot Jupiters". N.V.E. also acknowledges support by the RFBR grant No 16-52-14006. M.L.K. also acknowledges FWF projects I2939-N27 and the partial support by the Ministry of Education and Science of Russian federation (Grant No. RFMEFI61617X0084). I.F.S. acknowleges support of Russian Science Foundation project 18-12-00080. The software used in this work was in part developed by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago. This research was conducted using resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N), Umea University, Sweden. The authors are very thankful to Dr. David Ehrenreich for providing the Ly-alpha spectra of GJ 436b, which were used in this article. We would also like to sincerely thank Dr. Vincent Bourrier and Baptiste Lavie for original processing of these spectra. . - ISSN 1432-0746
РУБ Astronomy & Astrophysics

Аннотация: Aims. We modeled the transit signatures in the Lyman-alpha (Ly-alpha) line of a putative Earth-sized planet orbiting in the habitable zone (HZ) of the M dwarf GJ 436. We estimated the transit depth in the Ly-alpha line for an exo-Earth with three types of atmospheres: a hydrogen-dominated atmosphere, a nitrogen-dominated atmosphere, and a nitrogen-dominated atmosphere with an amount of hydrogen equal to that of the Earth. For all types of atmospheres, we calculated in-transit absorption they would produce in the stellar Ly-alpha line. We applied it to the out-of-transit Ly-alpha observations of GJ 436 obtained by the Hubble Space Telescope (HST) and compared the calculated in-transit absorption with observational uncertainties to determine if it would be detectable. To validate the model, we also used our method to simulate the deep absorption signature observed during the transit of GJ 436b and showed that our model is capable of reproducing the observations. Methods. We used a direct simulation Monte Carlo (DSMC) code to model the planetary exospheres. The code includes several species and traces neutral particles and ions. It includes several ionization mechanisms, such as charge exchange with the stellar wind, photo- and electron impact ionization, and allows to trace particles collisions. At the lower boundary of the DSMC model we assumed an atmosphere density, temperature, and velocity obtained with a hydrodynamic model for the lower atmosphere. Results. We showed that for a small rocky Earth-like planet orbiting in the HZ of GJ 436 only the hydrogen-dominated atmosphere is marginally detectable with the Space Telescope Imaging Spectrograph (STIS) on board the HST. Neither a pure nitrogen atmosphere nor a nitrogen-dominated atmosphere with an Earth-like hydrogen concentration in the upper atmosphere are detectable. We also showed that the Ly-alpha observations of GJ 436b can be reproduced reasonably well assuming a hydrogen-dominated atmosphere, both in the blue and red wings of the Ly-alpha line, which indicates that warm Neptune-like planets are a suitable target for Ly-alpha observations. Terrestrial planets, on the other hand, can be observed in the Ly-alpha line if they orbit very nearby stars, or if several observational visits are available.

WOS,
Смотреть статью,
Scopus,
РИНЦ

Держатели документа:
Univ Vienna, Dept Astrophys, Turkenschanzstr 17, A-1180 Vienna, Austria.
Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria.
Swedish Inst Space Phys, POB 812, S-98128 Kiruna, Sweden.
Russian Acad Sci, Inst Computat Modelling, Siberian Div, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
Inst Laser Phys SB RAS, Novosibirsk, Russia.

Доп.точки доступа:
Kislyakova, K. G.; Holmstrom, M.; Odert, P.; Lammer, H.; Erkaev, N., V; Khodachenko, M. L.; Shaikhislamov, I. F.; Dorfi, E.; Gudel, M.; Guedel, Manuel; Kislyakova, Kristina; Austria Science Fund (FWF) NFN project [S116-N16, S11606-N16, S11604-N16, S11607-N16]; Austrian Science Fund (FWF) [P25256-N27]; RFBR [16-52-14006]; FWF [I2939-N27]; Ministry of Education and Science of Russian federation [RFMEFI61617X0084]; Russian Science Foundation [18-12-00080]

    Thermocapillary Convection with Phase Transition in the 3D Channel in a Weak Gravity Field
/ V. B. Bekezhanova, O. N. Goncharova // Microgravity Sci. Technol. - 2019. - Vol. 31, Is. 4. - P357-376, DOI 10.1007/s12217-019-9691-4. - Cited References:38. - This work was partially supported by the Russian Foundation for Basic Research and the government of Krasnoyarsk region (project No. 18-41-242005). . - ISSN 0938-0108. - ISSN 1875-0494
РУБ Engineering, Aerospace + Thermodynamics + Mechanics

Аннотация: The regimes of joint flows of the evaporating liquid and vapor-gas mixture in a 3D rectangular channel are studied with the help of a partially invariant solution for the convection equations. The effects of thermodiffusion and diffusive thermal conductivity in the gas-vapor phase are additionally taken into account in the governing equations and under interface conditions. A numerical simulation of the 3D fluid flows is carried out for the liquid-gas system like ethanol-nitrogen and HFE-7100-nitrogen under microgravity conditions. The influence of the thermal load, liquid layer thickness and heat-transfer liquid type on the structure of the fluid flows and evaporation characteristics is investigated. The solution allows one to describe the formation of longitudinal thermocapillary rolls observed in the experiments. The evaporative mass flow rate depends essentially on the thermophysical properties of the working liquid. Spatial size and a shape of thermal patterns are determined by the applied thermal load and they can be varied with the change in the liquid layer thickness. Topological structure of the flows (double or quadruple vortex composition) is defined by the combined influence of the thermocapillary and convective mechanisms and phase transition effects. The results discussed in the paper provide motivation for the development of a classification of the 3D flow regimes similar to the Napolitano's classification for 2D flows.

WOS,
Смотреть статью,
Scopus

Держатели документа:
RAS, Inst Computat Modelling SB, Dept Differential Equat Mech, Akademgorodok 50-44, Krasnoyarsk 660036, Russia.
Altai State Univ, Pr Lenina 61, Barnaul 656049, Russia.

Доп.точки доступа:
Bekezhanova, V. B.; Goncharova, O. N.; Russian Foundation for Basic Research; government of Krasnoyarsk region [18-41-242005]

    Influence of the Thermophysical Properties of a Liquid Coolant on Characteristics of the 3D Flows with Phase Transition
/ V. B. Bekezhanova, O. N. Goncharova // J. Sib. Fed. Univ.-Math. Phys. - 2019. - Vol. 12, Is. 6. - P655-662, DOI 10.17516/1997-1397-2019-12-6-655-662. - Cited References:12. - This work was supported by the Russian Foundation for Basic Research and the government of Krasnoyarsk region (project no. 18-41-242005). . - ISSN 1997-1397. - ISSN 2313-6022
РУБ Mathematics
Рубрики:
EVAPORATIVE CONVECTION
Кл.слова (ненормированные):
evaporative convection -- thermocapillary interface -- three-dimensional -- flow -- mathematical model -- exact solution

Аннотация: Regimes of the joint flows of the evaporating liquid and gas-vapor mixture induced by the action of a longitudinal temperature gradient in a three-dimensional channel of a rectangular cross-section in the terrestrial gravity field are studied in the present paper. The theoretical investigations are carried out on the basis of the partially invariant solution of rank 2 and defect 3 of the Boussinesq approximation of the Navier - Stokes equations. This solution allows one to correctly describe the two-layer flows with evaporation/condensation at the thermocapillary interface and to take into account the effects of thermodiffusion and diffusive thermal conductivity in the gas-vapor phase. The exact solution of governing equations are characterized by dependence of the velocity components on the transverse coordinates only. The functions of pressure, temperature and concentration of vapor linearly depend on the longitudinal coordinate and have the summands which are functions on transverse coordinates. The required functions satisfy the set of differential equations, boundary and interface conditions followed from the original three-dimensional problem statement and are found as a result of numerical technique. The presented solution of the evaporative convection problem is very contensive. It permits to specify the 3D flow regimes with different topology, thermal and concentration characteristics observed in physical experiments. Differences of flows in the ethanol-nitrogen, HFE-7100 - nitrogen and FC-72- nitrogen systems are studied. Impact of the thermophysical properties of the working liquids on the basic characteristics of the fluid motions (hydrodynamical structure, temperature distribution, vapor content in the nitrogen, evaporative mass flow rate) is analyzed.

WOS,
Scopus

Держатели документа:
Inst Computat Modeling SB RAS, Acad Gorodok 50-44, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia.
Altai State Univ, Lenina 61, Barnaul 656049, Russia.

Доп.точки доступа:
Bekezhanova, Victoria B.; Goncharova, Olga N.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR); government of Krasnoyarsk region [18-41-242005]