Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 9

    Mass loss of "Hot Jupiters " - Implications for CoRoT discoveries. Part I: The importance of magnetospheric protection of a planet against ion loss caused by coronal mass ejections
[Text] / M. L. Khodachenko [et al.] // Planet Space Sci. - 2007. - Vol. 55: Symposium on Exoplanets and Planetary Formation (APR 25-30, 2004, Nice, FRANCE), Is. 5. - P631-642, DOI 10.1016/j.pss.2006.07.010. - Cited References: 63 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: Atmospheric erosion due to CME-caused ion pick-up is investigated here for the first time for short periodic gas giants (so-called "Hot Jupiters") orbiting close to a star, To study the effect of encountering CMEs produced on the inagnetospheres and atmospheres of "Hot Jupiters" we model possible interaction of dense CME plasma with the exoplanet HD209458b (r(pl) = 1.43r(Jup) M(pl) = 0.69 M(jup)), which orbits a 4.0-5.0 Gyr old Sun-like star at a distance of about 0.045 AU. A numerical hydrodynamic model is applied for calculation of the upper atmospheric density and the hydrogen wind of HD209458b Lis a function of planetocentric distance. Taking into account the similarity of HD209458b's host star to Our Sun we use for the study of the ion production and loss rate of H(+) ions the solar CME plasma parameters and apply a numerical test particle model. Tidal-locking of short periodic exoplanets closely located to their host stars should result in weaker intrinsic planetary magnetic moments, as compared to those of the fast rotating Jupiter type planets at much larger orbits. It is shown that in this case the encountering CME plasma can compress the magnetospheric stand-off distance of short periodic "Hot Jupiters" down to the heights Lit which the ionization and pick-LIP of the planetary neutral atmosphere by the CME plasma flow take place. Assuming for the host star of HD209458b the same CME occurrence rate Lis on the Suit, we estimate possible total mass loss rates of HD2094581b due to its collisions with CMEs over the planet lifetime. It has been found that Under different estimations of the value of a planetary magnetic moment, HD209458b Could have lost over its lifetime the mass from 0-2 up to several times of its present mass M(pl). (c) 2006 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Khodachenko, M.L.; Lammer, H.; Lichtenegger, H.I.M.; Langmayr, D.; Erkaev, N.V.; Еркаев, Николай Васильевич; Griessmeier, J.M.; Leitner, M.; Penz, T.; Biernat, H.K.; Motschmann, U.; Rucker, H.O.

    Plasma and magnetic field parameters in the vicinity of short-periodic giant exoplanets
[Text] / N. V. Erkaev [et al.] // Astrophys. J. Suppl. Ser. - 2005. - Vol. 157, Is. 2. - P396-401, DOI 10.1086/427904. - Cited References: 48 . - ISSN 0067-0049
РУБ Astronomy & Astrophysics

Аннотация: During the past years, more than 130 giant planets were discovered in extrasolar planetary systems. Because of the fact that the orbital distances are very close to their host stars, these planets are embedded in a dense stellar wind, which can pick up planetary ions. We model the stellar wind interaction of the short-periodic exoplanets OGLE-TR-56b and HD 209458b at their orbital distances of approximate to 0.023 AU and approximate to 0.045 AU, by calculating the Alfven Mach number and the magnetosonic Mach number in the stellar wind plasma flow. We then analyze the different plasma interaction regimes around the planetary obstacles, which appear for different stellar wind parameters. Our study shows that the stellar wind plasma parameters like temperature, interplanetary magnetic field, particle density, and velocity near planetary obstacles at orbital distances closer than 0.1-0.2 AU have conditions such that no bow shocks evolve. Our study shows also that these close-in exoplanets are in a submagnetosonic regime comparable to the magnetospheric plasma interaction of the inner satellites of Jupiter and Saturn. Furthermore, we compare the results achieved for both exoplanets with the Jupiter-class exoplanet HD 28185b at its orbital distance of approximate to 1.03 AU. Finally, we also discuss the behavior of the stellar wind plasma flow close to the planetary obstacles of two highly eccentric gas giants, namely, HD 108147b and HD 162020b. Because of their eccentric orbits, these two exoplanets periodically experience both regimes with and without a bow shock. Finally, we simulate the neutral gas density of HD 209458b with a Monte Carlo model. By using the plasma parameters obtained in our study we calculate the ion production and loss rate of H+ with a test particle model. Our simulations yield H+ loss rates for HD 209458b or similar giant exoplanets in orders of about 10(8)-10(9) g s(-1). These ion loss rates are at least 1 order of magnitude lower than the observed loss rate of evaporating neutral H atoms. Our study indicates, that similar gas giants at larger orbital distances have lower ion loss rates. Thus, the dominating component of particle loss of short-periodic Jupiter-class exoplanets will be neutral hydrogen.


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Penz, T.; Lammer, H.; Lichtenegger, H.I.M.; Biernat, H.K.; Wurz, P.; Griessmeier, J.M.; Weiss, W.W.

    Stellar-planetary relations: Atmospheric stability as a prerequisite for planetary habitability
[Text] / H. Lammer [et al.] // Celest. Mech. Dyn. Astron. - 2005. - Vol. 92, Is. 01.03.2013. - P273-285, DOI 10.1007/s10569-005-0004-4. - Cited References: 27 . - ISSN 0923-2958
РУБ Astronomy & Astrophysics + Mathematics, Interdisciplinary Applications

Аннотация: The region around a star where a life-supporting biosphere can evolve is the so-called Habitable Zone (HZ). The current definition of the HZ is based only on the mass-luminosity relation of the star and climatological and meteorological considerations of Earth-like planets, but neglects atmospheric loss processes due to the interaction with the stellar radiation and particle environment. From the knowledge of the planets in the Solar System, we know that planets can only evolve into a habitable world if they have a stable orbit around its host star and if they keep the atmosphere and water inventory during: (i) the period of heavy bombardment by asteroids and comets and (ii) during the host stars' active X-ray and extreme ultraviolet (XUV) and stellar wind periods. Impacts play a minor role for planets with the size and mass like Earth, while high XUV fluxes and strong stellar winds during the active periods of the young host star can destroy the atmospheres and water inventories. We show that XUV produced temperatures in the upper atmospheres of Earth-like planets can lead to hydrodynamic "blow off", resulting in the total loss of the planets water inventory and atmosphere, even if their orbits lie inside the HZ. Further, our study indicates that Earth-like planets inside the HZ of low mass stars may not develop an atmosphere, because at orbital distances closer than 0.3 AU, their atmospheres are highly affected by strong stellar winds and coronal mass ejections (CME's). Our study suggests that planetary magnetospheres will not protect the atmosphere of such planets, because the strong stellar wind of the young star can compress the magnetopause to the atmospheric obstacle. Moreover, planets inside close-in HZ's are tidally locked, therefore, their magnetic moments are weaker than those of an Earth-like planet at 1 AU. Our results indicate that Earth-like planets in orbits of low mass stars may not develop stable biospheres. From this point of view, a HZ, where higher life forms like on Earth may evolve is possibly restricted to higher mass K stars and G stars.


Доп.точки доступа:
Lammer, H.; Kulikov, Y.N.; Penz, T.; Leitner, M.; Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич

    Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations?
[Text] / H. . Lammer [et al.] // Astron. Astrophys. - 2009. - Vol. 506, Is. 1. - P399-410, DOI 10.1051/0004-6361/200911922. - Cited References: 46. - The authors thank the anonymous referee for constructive comments and suggestions which helped to improve the paper. H. Lammer, P. Odert, M. Leitzinger, M. L. Khodachenko and A. Hanslmeier gratefully acknowledge the Austrian Fonds zur Forderung der wissenschaftlichen Forschung (FWF grant P19446) for supporting this project. M. Panchenko and M. L. Khodachenko acknowledge also the Austrian Fonds zur Forderung der wissenschaftlichen Forschung (project P20680-N16). H. Lammer, H. I. M. Lichtenegger, H. K. Biernat, Yu. N. Kulikov and N. V. Erkaev thank the AAS "Verwaltungsstelle fur Auslandsbeziehungen" and the RAS. H. Lammer, H. I. M. Lichtenegger, M. L. Khodachenko and Yu. N. Kulikov acknowledge support from the Helmholtz-Gemeinschaft as this research has been supported by the Helmholtz Association through the research alliance "Planetary Evolution and Life". H. Lammer, M. L. Khodachenko, T. Penz, and Yu. N. Kulikov also acknowledge the International Space Science Institute (ISSI; Bern, Switzerland) and the ISSI teams "Evolution of Habitable Planets" and "Evolution of Exoplanet Atmospheres and their Characterization". H. K. Biernat acknowledges additional support due to the Austrian Science Fund under project P20145-N16. The authors also acknowledge fruitful discussions during various meetings related to the Europlanet N2 activities as well as within the N2 Exoplanet discipline working group DWG 7. T. Penz and G. Micela acknowledge support by the Marie Curie Fellowship Contract No. MTKD-CT-2004-002769 of the project "The influence of stellar high radiation on planetary atmospheres". The authors also thank the Austrian Ministry bm:bwk and ASA for funding the CoRoT project. . - ISSN 0004-6361
РУБ Astronomy & Astrophysics

Аннотация: Aims. We study the possible atmospheric mass loss from 57 known transiting exoplanets around F, G, K, and M-type stars over evolutionary timescales. For stellar wind induced mass loss studies, we estimate the position of the pressure balance boundary between Coronal Mass Ejection (CME) and stellar wind ram pressures and the planetary ionosphere pressure for non- or weakly magnetized gas giants at close orbits. Methods. The thermal mass loss of atomic hydrogen is calculated by a mass loss equation where we consider a realistic heating efficiency, a radius-scaling law and a mass loss enhancement factor due to stellar tidal forces. The model takes into account the temporal evolution of the stellar EUV flux by applying power laws for F, G, K, and M-type stars. The planetary ionopause obstacle, which is an important factor for ion pick-up escape from non- or weakly magnetized gas giants is estimated by applying empirical power-laws. Results. By assuming a realistic heating efficiency of about 10-25% we found that WASP-12b may have lost about 6-12% of its mass during its lifetime. A few transiting low density gas giants at similar orbital location, like WASP-13b, WASP-15b, CoRoT-1b or CoRoT-5b may have lost up to 1-4% of their initial mass. All other transiting exoplanets in our sample experience negligible thermal loss (<= 1%) during their lifetime. We found that the ionospheric pressure can balance the impinging dense stellar wind and average CME plasma flows at distances which are above the visual radius of "Hot Jupiters", resulting in mass losses <2% over evolutionary timescales. The ram pressure of fast CMEs cannot be balanced by the ionospheric plasma pressure for orbital distances between 0.02-0.1 AU. Therefore, collisions of fast CMEs with hot gas giants should result in large atmospheric losses which may influence the mass evolution of gas giants with masses
Scopus,
Смотреть статью


Доп.точки доступа:
Lammer, H.; Odert, P.; Leitzinger, M.; Khodachenko, M.L.; Panchenko, M.; Kulikov, Y.N.; Zhang, T.L.; Lichtenegger, H.I.M.; Erkaev, N.V.; Еркаев, Николай Васильевич; Wuchterl, G.; Micela, G.; Penz, T.; Biernat, H.K.; Weingrill, J.; Steller, M.; Ottacher, H.; Hasiba, J.; Hanslmeier, A.; Austrian Fonds zur Forderung der wissenschaftlichen Forschung [P19446, P20680-N16]; Helmholtz Association; Austrian Science Fund [P20145-N16]; "The influence of stellar high radiation on planetary atmospheres" [MTKD-CT-2004-002769]

    Stellar wind interaction and pick-up ion escape of the Kepler-11 "super-Earths"
[Text] / K. G. Kislyakova [et al.] // Astron. Astrophys. - 2014. - Vol. 562. - Ст. A116, DOI 10.1051/0004-6361/201322933. - Cited References: 45. - K.G. Kislyakova, C.P. Johnstone, M.L. Khodachenko, H. Lammer, T. Luftinger and M. Gudel acknowledge the support by the FWF NFN project S116601-N16 "Pathways to Habitability: From Disks to Active Stars, Planets and Life", and the related EWE NFN subprojects, S116 604-N16 "Radiation & Wind Evolution from T Tauri Phase to ZAMS and Beyond". 5116 606-N16 "Magnetospheric Electrodynamics of Exoplanets", and S116607-N16 "Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions". T. Luftinger acknowledges also the support by the FWF project P19962-N16. K. G. Kislyakova, H. Lammer, and P. Odert thank also the Helmholtz Alliance project "Planetary Evolution and Life". P. Odert acknowledges support from the EWE project P22950-N16. The authors also acknowledge support from the EU FP7 project IMPEx (No.262863) and the EUROPLANET-RI projects, JRA3/EMDAF and the Na2 science WG5. N. V. Erkaev acknowledges support by the RFBR grant No 12-05-00152-a. Finally, the authors thank the International Space Science Institute (ISSI) in Bern, and the ISSI team "Characterizing stellar- and exoplanetary environments". This research was conducted using resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N). The authors thank also the anonymous referee for his useful comments. . - ISSN 0004-6361. - ISSN 1432-0746
РУБ Astronomy & Astrophysics

Аннотация: Aims. We study the interactions between stellar winds and the extended hydrogen-dominated upper atmospheres of planets. We estimate the resulting escape of planetary pick-up ions from the five "super-Earths" in the compact Kepler-11 system and compare the escape rates with the efficiency of the thermal escape of neutral hydrogen atoms. Methods. Assuming the stellar wind of Kepler-11 is similar to the solar wind, we use a polytropic ID hydrodynamic wind model to estimate the wind properties at the planetary orbits. We apply a direct simulation Monte Carlo model to model the hydrogen coronae and the stellar wind plasma interaction around Kepler-11b-f within a realistic expected heating efficiency range of 15-40%. The same model is used to estimate the ion pick-up escape from the XUV heated and hydrodynamically extended upper atmospheres of Kepler-11b-f. From the interaction model, we study the influence of possible magnetic moments, calculate the charge exchange and photoionization production rates of planetary ions, and estimate the loss rates of pick-up H+ ions for all five planets. We compare the results between the five "super-Earths" and the thermal escape rates of the neutral planetary hydrogen atoms. Results. Our results show that a huge neutral hydrogen corona is formed around the planet for all Kepler-11b-f exoplanets. The non-symmetric form of the corona changes from planet to planet and is defined mostly by radiation pressure and gravitational effects. Non-thermal escape rates of pick-up ionized hydrogen atoms for Kepler-11 "super-Earths" vary between similar to.6.4x10(30) s(-1) and similar to 4.1 x10(31) s(-1), depending on the planet's orbital location and assumed heating efficiency. These values correspond to non-thermal mass loss rates of similar to 1.07 x 10(7) g s(-1) and similar to 6.8 x 10(2) g s(-1) respectively, which is a few percent of the thermal escape rates.

Полный текст (доступен только в локальной сети)

Держатели документа:
ИВМ СО РАН

Доп.точки доступа:
Kislyakova, K.G.; Johnstone, C.P.; Odert, P.; Erkaev, N.V.; Еркаев, Николай Васильевич; Lammer, H.; Luftinger, T.; Holmstrom, M.; Khodachenko, M.L.; Guedel, M.; FWF NFN project [S116601-N16]; EWE NFN subprojects T Tauri Phase [S116 604-N16]; "Magnetospheric Electrodynamics of Exoplanets" [5116 606-N16]; "Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions" [S116607-N16]; FWF project [P19962-N16]; EWE project [P22950-N16]; EU [262863]; EUROPLANET-RI projects [JRA3/EMDAF, Na2 science WG5]; RFBR [12-05-00152-a]

    On the ultraviolet anomalies of the WASP-12 and HD 189733 systems: Trojan satellites as a plasma source
/ K. G. Kislyakova [et al.] // Mon. Not. R. Astron. Soc. - 2016. - Vol. 461, Is. 1. - P988-999, DOI 10.1093/mnras/stw1110 . - ISSN 0035-8711
Аннотация: We suggest an additional possible plasma source to explain part of the phenomena observed for the transiting hot Jupiters WASP-12b and HD 189733b in their ultraviolet (UV) light curves. In the proposed scenario, material outgasses from the molten surface of Trojan satellites on tadpole orbits near the Lagrange points L4 and L5. We show that the temperature at the orbital location of WASP-12b is high enough to melt the surface of rocky bodies and to form shallow lava oceans on them. In case of WASP-12b, this leads to the release of elements such as Mg and Ca, which are expected to surround the system. The predicted Mg and Ca outgassing rates from two Io-sizedWASP-12b Trojans are ?2.2 ? 1027 s-1 and ?2.2 ? 1026 s-1, respectively. Trojan outgassing can lead to the apparent lack of emission in Mg II h&k and Ca II H&K line cores of WASP-12. For HD 189733b, the mechanism is only marginally possible due to the lower temperature. This may be one of the reasons that could not explain the early ingress of HD 189733b observed in the far-UV C II doublet due to absence of carbon within elements outgassed by molten lava. We investigate the long-term stability region of WASP-12b and HD 189733b in case of planar and inclined motion of these satellites and show that unlike the classical exomoons orbiting the planet, Io-sized Trojans can be stable for the whole systems lifetime. © 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, Graz, Austria
University of Vienna, Department of Astrophysics, Turkenschanzstrasse 17, Vienna, Austria
IMCCE Observatoire de Paris, Univ. Lille 1, UPMC, 77 Avenue Denfert-Rochereau, Paris, France
Institute of Computational Modelling, Siberian Division of Russian Academy of Sciences, Akademgorodok, ICM SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodnyy pr., 79, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kislyakova, K. G.; Pilat-Lohinger, E.; Funk, B.; Lammer, H.; Fossati, L.; Eggl, S.; Schwarz, R.; Boudjada, M. Y.; Erkaev, N. V.

    Dynamo models created on the planets under the influence of tidal forces of the satellite and the sun
/ V. A. Kochnev // International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM : International Multidisciplinary Scientific Geoconference, 2017. - Vol. 17: 17th International Multidisciplinary Scientific Geoconference, SGEM 2017 (29 June 2017 through 5 July 2017, ) Conference code: 130800, Is. 62. - P899-906, DOI 10.5593/sgem2017/62/S28.115 . -
Аннотация: It is known that the movement of the liquid core creates electric currents, inducing a main magnetic field of the planet. The liquid core of the high temperature becomes ionized plasma (plasma), which It is quasi-neutral (not neutral) - by definition. One of the major geodynamo questions: what is the source of strength, causing fluid movement in the core of the planet? Many authors have investigated geodynamo: planetary rotation around its axis, the temperature difference and pressure as well as the Coriolis force. Moffatt (1980), at the end of his book, as expressed the problem mentioned above “… For example, it is not yet known that the ultimate source energy is the basic movements of the Earth’s disk Dynamo”. In this study, the role of the driving forces of the liquid core considered tidal forces created axial rotation of the planet and the influence of external objects (the Sun and planets, satellites). The value of the tidal force on the equator of the planet depends on the radius and the period of the axial rotation of the planet, mass, radius and the orbital period of the satellite around the planet. The paper presents the formula and the results of the calculation of tidal forces and forecast the relative values equatorial magnetic fields of the planets all the planets of the solar system. The interpretation of the results illustrated with drawings. The new version of the dynamo It helps to explain the reasons high intensity magnetic Jupiter's field compared to Saturn’s fields, Uranus and Neptune, and much more Earth field intensity compared with fields of Venus, Mercury and Mars. The calculations of the correlation values the magnetic field at the equator: on the model according to the forecast and observations on the planets. Correlation coefficient is 0.997, that indicates a close relationship observed and estimates fields, and this is indirect evidence of the correctness of the adopted model. © SGEM2017 All Rights Reserved.

Scopus,
Смотреть статью

Держатели документа:
Institute of Computational Modelling of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kochnev, V. A.

    Relations Between vz and Bx Components in Solar Wind and their Effect on Substorm Onset
/ M. Kubyshkina [et al.] // Geophys. Res. Lett. - 2018. - Vol. 45, Is. 9. - P3760-3767, DOI 10.1002/2017GL076268 . - ISSN 0094-8276
Аннотация: We analyze two substorm onset lists, produced by different methods, and show that the (Bx·vz) product of the solar wind (SW) velocity and interplanetary magnetic field (IMF) components for two thirds of all substorm onsets has the same sign as IMF Bz. The explanation we suggest is the efficient displacement of the magnetospheric plasma sheet due to IMF Bx and SW flow vz, which both force the plasma sheet moving in one direction if the sign of (Bx·vz) correlates with the sign Bz. The displacement of the current sheet, in its turn, increases the asymmetry of the magnetotail and can alter the threshold of substorm instabilities. We study the SW and IMF data for the 15-year period (which comprises two substorm lists periods and the whole solar cycle) and reveal the similar asymmetry in the SW, so that the sign of (Bx·vz) coincides with the sign of IMF Bz during about two thirds of all the time. This disproportion can be explained if we admit that about 66% of IMF Bz component is transported to the Earth's orbit by the Alfven waves with antisunward velocities. ©2018. American Geophysical Union. All Rights Reserved.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Earth Physics Department, Saint Petersburg State University, Saint Petersburg, Russian Federation
Institute of Computational Modelling, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, Russian Federation
Department of Applied Mechanics, Siberian Federal University, Krasnoyarsk, Russian Federation
Finnish Meteorological Institute, Helsinki, Finland
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, United States

Доп.точки доступа:
Kubyshkina, M.; Semenov, V.; Erkaev, N.; Gordeev, E.; Dubyagin, S.; Ganushkina, N.; Shukhtina, M.

    The comparison of several approaches to the interpolation of a trajectory of a navigation satellite
/ E. D. Karepova, V. S. Kornienko // IOP Conference Series: Materials Science and Engineering : Institute of Physics Publishing, 2019. - Vol. 537: International Workshop on Advanced Technologies in Material Science, Mechanical and Automation Engineering - MIP: Engineering-2019 (4 April 2019 through 6 April 2019, ) Conference code: 149243, Is. 2. - Ст. 022054, DOI 10.1088/1757-899X/537/2/022054 . -

Кл.слова (ненормированные):
Interpolation -- Satellites -- Navigation satellites -- Polynomial interpolation -- Real-time application -- Satellite orbit -- Satellite position -- Orbits

Аннотация: Since a satellite orbit is quite smooth, polynomial techniques can be widely used for the interpolation of satellite positions in real-time applications. The paper is devoted to the comparison of different approaches to the polynomial interpolation of the trajectory of a satellite using available data. All approaches have been examined for test and actual data. © 2019 Published under licence by IOP Publishing Ltd.

Scopus,
Смотреть статью

Держатели документа:
Institute of Computational Modeling, Siberian Branch of Russian Academy of Sciences, 50/44 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, 79 Svobodnyi Prospect, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Karepova, E. D.; Kornienko, V. S.