Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 9

    Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state
/ V. S. Gerasimov [et al.] // Opt. Express. - 2016. - Vol. 24, Is. 23. - P26851-26856, DOI 10.1364/OE.24.026851 . - ISSN 1094-4087
Аннотация: Significant suppression of resonant properties of single gold nanoparticles at the surface plasmon frequency during heating and subsequent transition to the liquid state has been demonstrated experimentally and explained for the first time. The results for plasmonic absorption of the nanoparticles have been analyzed by means of Mie theory using experimental values of the optical constants for the liquid and solid metal. The good qualitative agreement between calculated and experimental spectra support the idea that the process of melting is accompanied by an abrupt increase of the relaxation constants, which depends, beside electronphonon coupling, on electron scattering at a rising number of lattice defects in a particle upon growth of its temperature, and subsequent melting as a major cause for the observed plasmonic suppression. It is emphasized that observed effect is fully reversible and may underlie nonlinear optical responses of nanocolloids and composite materials containing plasmonic nanoparticles and their aggregates in conditions of local heating and in general, manifest itself in a wide range of plasmonics phenomena associated with strong heating of nanoparticles. © 2016 Optical Society of America.

Scopus,
Смотреть статью

Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarskz, Russian Federation
Division of Theoretical Chemistry and Biology, Royal Institute of Technology, Stockholm, Sweden

Доп.точки доступа:
Gerasimov, V. S.; Ershov, A. E.; Gavrilyuk, A. P.; Karpov, S. V.; Agren, H.; Polyutov, S. P.

    Restructuring of plasmonic nanoparticle aggregates with arbitrary particle size distribution in pulsed laser fields
/ A. E. Ershov [et al.] // Chin. Phys. - 2016. - Vol. 25, Is. 11, DOI 10.1088/1674-1056/25/11/117806 . - ISSN 1674-1056
Аннотация: We have studied processes of interaction of pulsed laser radiation with resonant groups of plasmonic nanoparticles (resonant domains) in large colloidal nanoparticle aggregates having different interparticle gaps and particle size distributions. These processes are responsible for the origin of nonlinear optical effects and photochromic reactions in multiparticle aggregates. To describe photo-induced transformations in resonant domains and alterations in their absorption spectra remaining after the pulse action, we introduce the factor of spectral photomodification. Based on calculation of changes in thermodynamic, mechanical, and optical characteristics of the domains, the histograms of the spectrum photomodification factor have been obtained for various interparticle gaps, an average particle size, and the degree of polydispersity. Variations in spectra have been analyzed depending on the intensity of laser radiation and various combinations of size characteristics of domains. The obtained results can be used to predict manifestation of photochromic effects in composite materials containing different plasmonic nanoparticle aggregates in pulsed laser fields. © 2016 Chinese Physical Society and IOP Publishing Ltd.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Computational Modeling, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
L. V. Kirensky Institute of Physics of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ershov, A. E.; Gavrilyuk, A. P.; Karpov, S. V.; Polyutov, S. P.

    Thermal limiting effects in optical plasmonic waveguides
/ A. E. Ershov [et al.] // J. Quant. Spectrosc. Radiat. Transf. - 2017. - Vol. 191. - P1-6, DOI 10.1016/j.jqsrt.2017.01.023 . - ISSN 0022-4073
Аннотация: We have studied thermal effects occurring during excitation of optical plasmonic waveguide (OPW) in the form of linear chain of spherical Ag nanoparticles by pulsed laser radiation. It was shown that heating and subsequent melting of the first irradiated particle in a chain can significantly deteriorate the transmission efficiency of OPW that is the crucial and limiting factor and continuous operation of OPW requires cooling devices. This effect is caused by suppression of particle's surface plasmon resonance due to reaching the melting point temperature. We have determined optimal excitation parameters which do not significantly affect the transmission efficiency of OPW. © 2017

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Royal Institute of Technology, Stockholm, Sweden
The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Доп.точки доступа:
Ershov, A.E.; Ершов, Александр Евгеньевич; Gerasimov, V. S.; Gavrilyuk, A.P.; Гаврилюк, Анатолий Петрович; Karpov, S. V.; Zakomirnyi, V. I.; Rasskazov, I. L.; Polyutov, S. P.

    Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited]
/ V. S. Gerasimov [et al.] // Opt. Mater. Express. - 2017. - Vol. 7, Is. 2. - P555-568, DOI 10.1364/OME.7.000555 . - ISSN 2159-3930
Аннотация: We have studied light induced processes in nanocolloids and composite materials containing ordered and disordered aggregates of plasmonic nanoparticles accompanied by their strong heating. A universal comprehensive physical model that combines mechanical, electrodynamical, and thermal interactions at nanoscale has been developed as a tool for investigations. This model was used to gain deep insight on phenomena that take place in nanoparticle aggregates under high-intensity pulsed laser radiation resulting in the suppression of nanoparticle resonant properties. Verification of the model was carried out with single colloidal Au and Ag nanoparticles and their aggregates. © 2017 Optical Society of America.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Royal Institute of Technology, Stockholm, Sweden
The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Доп.точки доступа:
Gerasimov, V. S.; Ershov, A.E.; Ершов, Александр Евгеньевич; Karpov, S. V.; Gavrilyuk, A.P.; Гаврилюк, Анатолий Петрович; Zakomirnyi, V. I.; Rasskazov, I. L.; Agren, H.; Polyutov, S. P.

    Surface plasmon resonances in liquid metal nanoparticles
/ A. E. Ershov [et al.] // Appl Phys B. - 2017. - Vol. 123, Is. 6, DOI 10.1007/s00340-017-6755-2 . - ISSN 0946-2171
Аннотация: We have shown significant suppression of resonant properties of metallic nanoparticles at the surface plasmon frequency during the phase transition “solid–liquid” in the basic materials of nanoplasmonics (Ag, Au). Using experimental values of the optical constants of liquid and solid metals, we have calculated nanoparticle plasmonic absorption spectra. The effect was demonstrated for single particles, dimers and trimers, as well as for the large multiparticle colloidal aggregates. Experimental verification was performed for single Au nanoparticles heated to the melting temperature and above up to full suppression of the surface plasmon resonance. It is emphasized that this effect may underlie the nonlinear optical response of composite materials containing plasmonic nanoparticles and their aggregates. © 2017, Springer-Verlag Berlin Heidelberg.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
Siberian State University of Science and Technologies, Krasnoyarsk, Russian Federation
L.V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ershov, A. E.; Gerasimov, V. S.; Gavrilyuk, A. P.; Karpov, S. V.

    Titanium nitride as light trapping plasmonic material in silicon solar cell
/ N. Venugopal [et al.] // Opt Mater. - 2017. - Vol. 72. - P397-402, DOI 10.1016/j.optmat.2017.06.035 . - ISSN 0925-3467

Кл.слова (ненормированные):
Photovoltaics -- Plasmonics -- Titanium nitride -- Absorption spectroscopy -- CMOS integrated circuits -- Efficiency -- Gold -- Metals -- MOS devices -- Nanoparticles -- Nanostructured materials -- Nitrides -- Optoelectronic devices -- Plasmons -- Semiconductor devices -- Silicon -- Silver -- Solar cells -- Solar power generation -- Thin film solar cells -- Thin films -- Time domain analysis -- Tin oxides -- Titanium -- Titanium compounds -- Titanium nitride -- Absorption enhancement -- Complementary metal oxide semiconductors -- Nanoparticle diameter -- Other opto-electronic devices -- Photovoltaics -- Plasmonic nanoparticle -- Plasmonics -- Thin-film silicon solar cells -- Silicon solar cells

Аннотация: Light trapping is a crucial prominence to improve the efficiency in thin film solar cells. However, last few years, plasmonic based thin film solar cells shows potential structure to improve efficiency in photovoltaics. In order to achieve the high efficiency in plasmonic based thin film solar cells, traditionally noble metals like Silver (Ag) and Gold (Au) are extensively used due to their ability to localize the light in nanoscale structures. In this paper, we numerically demonstrated the absorption enhancement due to the incorporation of novel plasmonic TiN nanoparticles on thin film Silicon Solar cells. Absorption enhancement significantly affected by TiN plasmonic nanoparticles on thin film silicon was studied using Finite-Difference-Time-Domain Method (FDTD). The optimal absorption enhancement 1.2 was achieved for TiN nanoparticles with the diameter of 100 nm. The results show that the plasmonic effect significantly dominant to achieve maximum absorption enhancement g(?) at longer wavelengths (red and near infrared) and as comparable with Au nanoparticle on thin film Silicon. The absorption enhancement can be tuned to the desired position of solar spectrum by adjusting the size of TiN nanoparticles. Effect of nanoparticle diameters on the absorption enhancement was also thoroughly analyzed. The numerically simulated results show that TiN can play the similar role as gold nanoparticles on thin film silicon solar cells. Furthermore, TiN plasmonic material is cheap, abundant and more Complementary Metal Oxide Semiconductor (CMOS) compatible material than traditional plasmonic metals like Ag and Au, which can be easy integration with other optoelectronic devices. © 2017 Elsevier B.V.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
L.V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Venugopal, N.; Gerasimov, V. S.; Ershov, A. E.; Karpov, S. V.; Polyutov, S. P.

    Refractory titanium nitride two-dimensional structures with extremely narrow surface lattice resonances at telecommunication wavelengths
/ V. I. Zakomirnyi [et al.] // Appl Phys Lett. - 2017. - Vol. 111, Is. 12, DOI 10.1063/1.5000726 . - ISSN 0003-6951
Аннотация: Regular arrays of plasmonic nanoparticles have brought significant attention over the last decade due to their ability to support localized surface plasmons (LSPs) and exhibit diffractive grating behavior simultaneously. For a specific set of parameters (i.e., period, particle shape, size, and material), it is possible to generate super-narrow surface lattice resonances (SLRs) that are caused by interference of the LSP and the grating Rayleigh anomaly. In this letter, we propose plasmonic structures based on regular 2D arrays of TiN nanodisks to generate high-Q SLRs in an important telecommunication range, which is quite difficult to achieve with conventional plasmonic materials. The position of the SLR peak can be tailored within the whole telecommunication bandwidth (from ? 1.26 ?m to ? 1.62 ?m) by varying the lattice period, while the Q-factor is controlled by changing nanodisk sizes. We show that the Q-factor of SLRs can reach a value of 2 ? 103, which is the highest reported Q-factor for SLRs at telecommunication wavelengths so far. Tunability of optical properties, refractory behavior, and low-cost fabrication of TiN nanoparticles paves the way for manufacturing cheap nanostructures with extremely stable and adjustable electromagnetic response at telecommunication wavelengths for a large number of applications. © 2017 Author(s).

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation
L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Zakomirnyi, V. I.; Rasskazov, I. L.; Gerasimov, V. S.; Ershov, A. E.; Polyutov, S. P.; Karpov, S. V.

    Titanium nitride nanoparticles as an alternative platform for plasmonic waveguides in the visible and telecommunication wavelength ranges
/ V. I. Zakomirnyi [et al.] // Photonics Nanostruc. Fundam. Appl. - 2018. - Vol. 30. - P50-56, DOI 10.1016/j.photonics.2018.04.005 . - ISSN 1569-4410
Аннотация: We propose to utilize titanium nitride (TiN) as an alternative material for linear periodic chains (LPCs) of nanoparticles (NPs) which support surface plasmon polariton (SPP) propagation. Dispersion and transmission properties of LPCs have been examined within the framework of the dipole approximation for NPs with various shapes: spheres, prolate and oblate spheroids. It is shown that LPCs of TiN NPs support high-Q eigenmodes for an SPP attenuation that is comparable with LPCs from conventional plasmonic materials such as Au or Ag, with the advantage that the refractory properties and cheap fabrication of TiN nanostructures are more preferable in practical implementations compared to Au and Ag. We show that the SPP decay in TiN LPCs remains almost the same even at extremely high temperatures which is impossible to reach with conventional plasmonic materials. Finally, we show that the bandwidth of TiN LPCs from non-spherical particles can be tuned from the visible to the telecommunication wavelength range by switching the SPP polarization, which is an attractive feature for integrating these structures into modern photonic devices. © 2018 Elsevier B.V.

Scopus,
Смотреть статью

Держатели документа:
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Zakomirnyi, V. I.; Rasskazov, I. L.; Gerasimov, V. S.; Ershov, A. E.; Polyutov, S. P.; Karpov, S. V.; Agren, H.

    Engineering mode hybridization in regular arrays of plasmonic nanoparticles embedded in 1D photonic crystal
/ V. S. Gerasimov [et al.] // J. Quant. Spectrosc. Radiat. Transf. - 2019. - Vol. 224. - P303-308, DOI 10.1016/j.jqsrt.2018.11.028 . - ISSN 0022-4073
Аннотация: We analytically and numerically study coupling mechanisms between 1D photonic crystal (PhC) and 2D array of plasmonic nanoparticles (NPs) embedded in its defect layer. We introduce general formalism to explain and predict the emergence of PhC-mediated Wood–Rayleigh anomalies, which spectral positions agree well with the results of exact simulations with Finite-Difference Time-Domain (FDTD) method. Electromagnetic coupling between localized surface plasmon resonance (LSPR) and PhC-mediated Wood–Rayleigh anomalies makes it possible to efficiently tailor PhC modes. The understanding of coupling mechanisms in such hybrid system paves a way for optimal design of sensors, light absorbers, modulators and other types of modern photonic devices with controllable optical properties. © 2018 Elsevier Ltd

Scopus,
Смотреть статью

Держатели документа:
Institute of Computational Modeling SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Federal Siberian Research Clinical Centre under FMBA of Russia, Krasnoyarsk, 660037, Russian Federation
Polytechnic Institute, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
The Institute of Optics, University of Rochester, Rochester, NY 14627, United States
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, 660014, Russian Federation

Доп.точки доступа:
Gerasimov, V. S.; Ershov, A. E.; Bikbaev, R. G.; Rasskazov, I. L.; Timofeev, I. V.; Polyutov, S. P.; Karpov, S. V.