Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 7

    Conditions at the magnetopause of Saturn and implications for the solar wind interaction
[Text] : статья / M.Desroche [et al.] // J. Geophys. Res-Space Phys. - 2013. - Vol. 118, Is. 6. - P3087-3095, DOI 10.1002/jgra.50294. - Cited References: 43. - The authors thank Chris Arridge for initially suggesting this project. The authors are thankful to Adam Masters, Bob Ergun, Jack Gosling, Martin Goldman, and Dmitri Uzdensky for helpful discussions and guidance. This work was supported by NASA's NESSF program. N.V. Erkaev acknowledges support by the RFBR grant No 12-05-00152-a. . - 9. - ISSN 2169-9380
РУБ Astronomy & Astrophysics

Аннотация: Using idealized models of the magnetosheath and magnetospheric magnetic fields, plasma densities, and plasma flow, we test for the steady state viability of processes mediating the interaction between the solar wind and the magnetosphere of Saturn. The magnetopause is modeled as an asymmetric paraboloid with a standoff distance of approximate to 25R(S). We test where on the magnetopause surface largescale reconnection may be affected by either a shear flow or diamagnetic drift due to a pressure gradient across the magnetopause boundary. We also test for the onset of the KelvinHelmholtz instability. We find that, for the solar wind and magnetosphere states considered, reconnection is inhibited on the dawn flank due to the large shear flows in this region. Additionally, most of the dawn and dusk equatorial region of the magnetopause is KelvinHelmholtz unstable, due to the presence of the dense magnetospheric plasma sheet and weak magnetic fields on either side of the magnetopause. This study is a followup to a previously published study of the solar wind interaction with Jupiter's magnetosphere.


Доп.точки доступа:
Desroche, M.; Bagenal, F.; Delamere, P.A.; Erkaev, N.V.; Еркаев, Николай Васильевич; NASA's NESSF program; RFBR [12-05-00152-a]

    Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction
/ M. Desroche [et al.] // J. Geophys. Res-Space Phys. - 2012. - Vol. 117. - Ст. A07202, DOI 10.1029/2012JA017621. - Cited References: 50. - The authors thank Chris Arridge for initially suggesting this project. The authors are thankful to Adam Masters, Bob Ergun, Jack Gosling, Martin Goldman, and Dmitri Uzdensky for helpful discussions and guidance. This work was supported by NASA's NESSF program and JUNO mission. . - ISSN 0148-0227
РУБ Astronomy & Astrophysics

Аннотация: Using idealized models of the magnetosheath and magnetosphere magnetic fields, plasma densities, and plasma flow, we test for the steady state viability of processes mediating the interaction between the solar wind and the Jovian magnetosphere. The magnetopause is modeled as an asymmetric paraboloid with variable asymmetry. The subsolar standoff of the magnetopause has been shown to exhibit a bimodal probability distribution (Joy et al., 2002). Only the expanded magnetopause is considered, with a standoff of similar to 90 R-J. We test where on the magnetopause surface large-scale reconnection may be affected by either a shear flow or diamagnetic drift due to a pressure gradient across the magnetopause boundary. We also test for the onset of the Kelvin-Helmholtz instability. We find that reconnection is inhibited on the dawn flank due to the large shear flows in this region, regardless of magnetopause shape or interplanetary magnetic field orientation. The presence of a high energy plasma population in the magnetosphere may inhibit reconnection over much of the magnetopause area, except when the fields are antiparallel. Additionally, most of the dawn flank of the magnetopause is Kelvin-Helmholtz unstable, regardless of magnetopause asymmetry; and the dusk flank tailward of the planet is Kelvin-Helmholtz unstable when the magnetopause is highly oblate.


Доп.точки доступа:
Desroche, M.; Bagenal, F.; Delamere, P.A.; Erkaev, N.V.; Еркаев, Николай Васильевич

    Plasma and magnetic field parameters in the vicinity of short-periodic giant exoplanets
[Text] / N. V. Erkaev [et al.] // Astrophys. J. Suppl. Ser. - 2005. - Vol. 157, Is. 2. - P396-401, DOI 10.1086/427904. - Cited References: 48 . - ISSN 0067-0049
РУБ Astronomy & Astrophysics

Аннотация: During the past years, more than 130 giant planets were discovered in extrasolar planetary systems. Because of the fact that the orbital distances are very close to their host stars, these planets are embedded in a dense stellar wind, which can pick up planetary ions. We model the stellar wind interaction of the short-periodic exoplanets OGLE-TR-56b and HD 209458b at their orbital distances of approximate to 0.023 AU and approximate to 0.045 AU, by calculating the Alfven Mach number and the magnetosonic Mach number in the stellar wind plasma flow. We then analyze the different plasma interaction regimes around the planetary obstacles, which appear for different stellar wind parameters. Our study shows that the stellar wind plasma parameters like temperature, interplanetary magnetic field, particle density, and velocity near planetary obstacles at orbital distances closer than 0.1-0.2 AU have conditions such that no bow shocks evolve. Our study shows also that these close-in exoplanets are in a submagnetosonic regime comparable to the magnetospheric plasma interaction of the inner satellites of Jupiter and Saturn. Furthermore, we compare the results achieved for both exoplanets with the Jupiter-class exoplanet HD 28185b at its orbital distance of approximate to 1.03 AU. Finally, we also discuss the behavior of the stellar wind plasma flow close to the planetary obstacles of two highly eccentric gas giants, namely, HD 108147b and HD 162020b. Because of their eccentric orbits, these two exoplanets periodically experience both regimes with and without a bow shock. Finally, we simulate the neutral gas density of HD 209458b with a Monte Carlo model. By using the plasma parameters obtained in our study we calculate the ion production and loss rate of H+ with a test particle model. Our simulations yield H+ loss rates for HD 209458b or similar giant exoplanets in orders of about 10(8)-10(9) g s(-1). These ion loss rates are at least 1 order of magnitude lower than the observed loss rate of evaporating neutral H atoms. Our study indicates, that similar gas giants at larger orbital distances have lower ion loss rates. Thus, the dominating component of particle loss of short-periodic Jupiter-class exoplanets will be neutral hydrogen.


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Penz, T.; Lammer, H.; Lichtenegger, H.I.M.; Biernat, H.K.; Wurz, P.; Griessmeier, J.M.; Weiss, W.W.

    Solar System magnetospheres
[Text] / M. Blanc, R. Kallenbach, N. V. Erkaev // Space Sci. Rev. - 2005. - Vol. 116: Workshop on Comparative Study of the Outer Planets before the Exploration of Saturn (JAN 12-14, 2004, Bern, SWITZERLAND), Is. 01.02.2013. - P227-298, DOI 10.1007/s11214-005-1958-y. - Cited References: 202 . - ISSN 0038-6308
РУБ Astronomy & Astrophysics

Аннотация: This article proposes a short review of our present knowledge of solar system magnetospheres, with the purpose of placing the study of Saturn's inagnetosphere in the context of a comparative approach. We describe the diversity of solar system magnetospheres and the underlying causes of this diversity: nature and magnetization state of the planetary obstacle, presence or not of a dense atmosphere, rotation state of the planet, existence of a system of satellites, rings and neutral gas populations in orbit around the planet. We follow the "russian doll" hierarchy of solar system magnetospheres to briefly describe the different objects of this family: the heliosphere, which is the Sun's magnetosphere; the "elementary" magnetospheres of the inner planets, Earth and Mercury; the "complex" magnetospheres of the giant planets, dominated by planetary rotation and the presence of interacting objects within their magnetospheric cavities, some of which, like Ganymede, to or Titan, produce small intrinsic or induced magnetospheres inside the large one. We finally describe the main original features of Saturn's magnetosphere as we see them after the Voyager fly-bys and before the arrival of Cassini at Saturn, and list some of the key questions which Cassini will have to address during its four-year orbital tour.


Доп.точки доступа:
Blanc, M.; Kallenbach, R.; Erkaev, N.V.; Еркаев, Николай Васильевич

    The effect of the magnetopause shapes of Jupiter and Saturn on magnetosheath parameters
[Text] / C. J. Farrugia, H. K. Biernat, N. V. Erkaev // Planet Space Sci. - 1998. - Vol. 46, Is. 5. - P507-514, DOI 10.1016/S0032-0633(97)00225-0. - Cited References: 20 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: The solar wind flow past nonaxisymmetric magnetospheres exhibits features which are absent in the case of axisymmetric magnetospheres such as that of Earth. We discuss results obtained by a numerical integration of the dissipationless MHD equations, under simplifying assumptions, and apply them to the two outer planets Jupiter and Saturn, both of whose magnetospheres depart substantially from axisymmetry. We model these magnetospheres as paraboloids with two different radii of curvature at the subsolar point, L-0 and L-1, where L-0 and L-1 refer to a magnetopause cut containing the rotational axis, and to the rotational equator, respectively (L-0 L-1). The degree of flattening is expressed by a parameter q :


Доп.точки доступа:
Farrugia, C.J.; Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич

    Numerical modelling of solar wind flow about nonaxisymmetric magnetospheres: Planets Jupiter and Saturn
[Text] / C. J. Farrugia, H. K. Biernat, N. V. Erkaev // PLANETARY IONOSPHERES AND MAGNETOSPHERES. Ser. ADVANCES IN SPACE RESEARCH-SERIES : PERGAMON PRESS LTD, 1997. - Vol. 20: C3.2 Symposium of COSPAR Scientific Commission C on Planetary Ionospheres and Magnetospheres, at the 31st COSPAR Scientific Assembly (JUL 14-21, 1996, BIRMINGHAM, ENGLAND), Is. 2. - P209-213, DOI 10.1016/S0273-1177(97)00535-8. - Cited References: 15 . - ISBN 0273-1177. - ISBN 0-08-043297-2
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: We discuss results on the solar wind flow past the non-axisymmetric magnetospheres of planets Jupiter and Saturn obtained by integrating numerically the dissipationless MHD equations under simplifying assumptions. We model these equatorially broadened magnetospheres as paraboloids with two different radii of curvature at the subsolar point. The thickness of the magnetosheath and the width and structure of the plasma depletion layer are found to be strong functions of the orientation of the interplanetary magnetic field (IMF). The effect of the IMF on the magnetosheath is strongest (weakest) when the IMF is directed perpendicular (parallel) to the rotational equator. For any intermediate IMF orientation, a smooth rotation of the magnetosheath magnetic field towards the direction of the planet's rotational axis is superimposed on the field strength enhancement (and the density reduction) as the respective magnetopauses are approached. These effects are more pronounced at Jupiter than at Saturn. (C) 1997 COSPAR. Published by Elsevier Science Ltd.


Доп.точки доступа:
Farrugia, C.J.; Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич

    Aerosol Constraints on the Atmosphere of the Hot Saturn-mass Planet WASP-49b
/ P. E. Cubillos [et al.] // Astrophys. J. - 2017. - Vol. 849, Is. 2, DOI 10.3847/1538-4357/aa9019 . - ISSN 0004-637X
Аннотация: The strong, nearly wavelength-independent absorption cross section of aerosols produces featureless exoplanet transmission spectra, limiting our ability to characterize their atmospheres. Here, we show that even in the presence of featureless spectra, we can still characterize certain atmospheric properties. Specifically, we constrain the upper and lower pressure boundaries of aerosol layers, and present plausible composition candidates. We study the case of the bloated Saturn-mass planet WASP-49 b, where near-infrared observations reveal a flat transmission spectrum between 0.7 and 1.0 ?m. First, we use a hydrodynamic upper-atmosphere code to estimate the pressure reached by the ionizing stellar high-energy photons at 10-8 bar, setting the upper pressure boundary where aerosols could exist. Then, we combine HELIOS and Pyrat Bay radiative-transfer models to constrain the temperature and photospheric pressure of atmospheric aerosols, in a Bayesian framework. For WASP-49 b, we constrain the transmission photosphere (hence, the aerosol deck boundaries) to pressures above 10-5 bar (100?solar metallicity), 10-4 bar (solar), and 10-3 bar (0.1?solar) as the lower boundary, and below 10-7 bar as the upper boundary. Lastly, we compare condensation curves of aerosol compounds with the planet's pressure-temperature profile to identify plausible condensates responsible for the absorption. Under these circumstances, we find these candidates: Na2S (at 100? solar metallicity); Cr and MnS (at solar and 0.1?solar); and forsterite, enstatite, and alabandite (at 0.1?solar). © 2017. The American Astronomical Society. All rights reserved.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, Graz, Austria
Federal Research Center Krasnoyarsk Science Center SB RAS, Institute of Computational Modelling, Krasnoyarsk, Russian Federation
Center for Space and Habitability, University of Bern, Sidlerstrasse 5, Bern, Switzerland
Institut fur Geophysik und Meteorologie, Universitat zu Koln, Albertus-Magnus-Platz, Koln, Germany
Max Planck Institute for Astronomy, Konigstuhl 17, Heidelberg, Germany
Department of Astrophysics, University of Vienna, Turkenschanzstrasse 17, Vienna, Austria
Geneva Observatory, University of Geneva, ch. de Maillettes 51, Versoix, Switzerland

Доп.точки доступа:
Cubillos, P. E.; Fossati, L.; Erkaev, N. V.; Malik, M.; Tokano, T.; Lendl, M.; Johnstone, C. P.; Lammer, H.; Wyttenbach, A.