Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 2

    Analysis of the characteristic perturbations spectrum of the exact invariant solution of the microconvection equations
/ V. B. Bekezhanova // Int. J. Heat Mass Transf. - 2018. - Vol. 118. - P570-586, DOI 10.1016/j.ijheatmasstransfer.2017.11.021 . - ISSN 0017-9310
Аннотация: The properties of an exact invariant solution of the equations of microconvection of isothermally incompressible liquids have been investigated. The solution describes a stationary fluid flow in a vertical channel. The temperature or heat flux can be given at the solid boundaries of the channel. A classification of the solutions and their physical interpretation are suggested. In accordance with the classification the solutions describe different types of flows. The solution of the stability problem of all classes of flows in the vertical channel with the given temperature on the walls is presented. The structure of the spectrum of small non-stationary spatial perturbations for the model medium (silicon dioxide melt) has been studied, depending on the configuration of the perturbation wave, thickness channel, thermal and gravitational effects. The formation regularities of different types of the thermal and hydrodynamic disturbances have been determined. The interaction of the thermal and hydrodynamic perturbations leads to the formation of various convective structures. Typical patterns of the velocity and temperature perturbations and relations of critical characteristics of the instability are presented, depending on the problem parameters. The most dangerous mechanisms change from hydrodynamic to thermal ones with the variation of the viscous and thermal liquid properties. © 2017 Elsevier Ltd

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Computational Modeling SB RAS, Akademgorodok 50/44, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodny pr. 79, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Bekezhanova, V. B.

    Super-efficient laser hyperthermia of malignant cells with core-shell nanoparticles based on alternative plasmonic materials
/ A. S. Kostyukov [et al.] // J. Quant. Spectrosc. Radiat. Transf. - 2019. - Vol. 236. - Ст. 106599, DOI 10.1016/j.jqsrt.2019.106599 . - ISSN 0022-4073

Кл.слова (ненормированные):
Conducting oxides -- Nanoparticle -- Nanoshell -- Plasmonic photothermal therapy -- Aluminum oxide -- Core shell nanoparticles -- Efficiency -- Gallium compounds -- II-VI semiconductors -- Nanoparticles -- Nanoshells -- Nanostructured materials -- Optical films -- Plasmonics -- Pulsed lasers -- Shells (structures) -- Silica -- Specific heat -- Transparent conducting oxides -- Zinc oxide -- Aluminum-doped zinc oxide -- Comparative studies -- Conducting oxides -- Gallium doped zinc oxides -- Nanoshell -- Orders of magnitude -- Photothermal therapy -- Spatial localization -- Plasmonic nanoparticles -- aluminum -- cell -- comparative study -- gold -- nanoparticle -- oxide -- zinc

Аннотация: New type of highly absorbing core-shell AZO/Au (aluminum doped zinc oxide/gold) and GZO/Au (gallium doped zinc oxide/gold) nanoparticles have been proposed for hyperthermia of malignant cells purposes. Comparative studies of pulsed laser hyperthermia were performed for Au nanoshells with AZO core and traditional SiO2 (quartz) core. We show that under the same conditions, the hyperthermia efficiency in the case of AZO increases by several orders of magnitude compared to SiO2 due to low heat capacity of AZO. Similar results have been obtained for GZO core which has same heat capacity. Calculations for pico-, nano- and sub-microsecond pulses demonstrate that reduced pulse duration results in strong spatial localization of overheated areas around nanoparticles, which ensures the absence of negative effects to the normal tissue. Moreover, we propose new alternative way for the optimization of hyperthermia efficiency: instead of maximizing the absorption of nanoparticles, we enhance the thermal damage effect on the membrane of malignant cell. This strategy allows to find the parameters of nanoparticle and the incident radiation for the most effective therapy. © 2019 Elsevier Ltd

Scopus,
Смотреть статью

Держатели документа:
Siberian Federal UniversityKrasnoyarsk, Russian Federation
Institute of Computational Modeling SB RASKrasnoyarsk, Russian Federation
Siberian State University of Science and TechnologyKrasnoyarsk, Russian Federation
The Institute of Optics, University of RochesterNY, United States
Kirensky Institute of Physics, Federal Research Center KSC SB RASKrasnoyarsk, Russian Federation

Доп.точки доступа:
Kostyukov, A. S.; Ershov, A. E.; Gerasimov, V. S.; Filimonov, S. A.; Rasskazov, I. L.; Karpov, S. V.