Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 4

    Preparation and ionic selectivity of carbon-coated alumina nanofiber membranes
/ D. V. Lebedev [et al.] // Pet. Chem. - 2017. - Vol. 57, Is. 4. - P306-317, DOI 10.1134/S096554411704003X. - Cited References:52. - This work was supported by the Russian Science Foundation, grant no. 15-19-10017. Instrumental analysis of the materials was performed in the Shared Equipment Center at the Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy Sciences. . - ISSN 0965-5441. - ISSN 1555-6239
РУБ Chemistry, Organic + Chemistry, Physical + Energy & Fuels + Engineering,

Аннотация: A novel type of ion-selective membranes based on Nafen(TM) alumina nanofibers coated with carbon is proposed. The membranes are produced by filtration of a Nafen nanofiber suspension through a porous support followed by drying and sintering. A thin carbon layer (up to 2 nm) is deposited on the nanofibers by chemical vapor deposition (CVD). Its formation is confirmed by the results of Raman spectroscopy and visually observed in TEM images. According to low temperature nitrogen adsorption experiments, the formation of carbon layer leads to decreasing pore size (the maximum of pore size distribution shifts from 28 to 16 nm) and the corresponding decrease of porosity (from 75 to 62%) and specific surface area (from 146 to 107 m(2)g(-1)). The measurement of membrane potential in an electrochemical cell has shown that the deposition of carbon on the membrane results in high ionic selectivity. In an aqueous KCl solution, the membranes display high anion selectivity with anion and cation transference numbers of 0.94 and 0.06, respectively. The fixed-charge density of membrane has been determined by fitting the experimental data using the Teorell-Meyer-Sievers model. It has been found that the membrane fixed-charge density increases with increasing electrolyte concentration. Possible applications of the membranes produced include nanofiltration, ultrafiltration, and separation of charged species in mixtures. The formation of a conductive carbon layer on the pore surface can be employed for fabricating membranes with switchable ion-transport selectivity.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk, Russia.
Russian Acad Sci, Siberian Branch, Mol Elect Dept, Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia.
Natl Res Univ Elect Technology MIET, Moscow, Russia.
Russian Acad Sci, Siberian Branch, Inst Chem & Chem Technol, Krasnoyarsk, Russia.

Доп.точки доступа:
Lebedev, D.V.; Лебедев Д.В.; Shiverskiy, A. V.; Simunin, M. M.; Solodovnichenko, V.S.; Солодовниченко В.С.; Parfenov, V. A.; Bykanova, V. V.; Khartov, S. V.; Ryzhkov, I.I.; Рыжков, Илья Игоревич; Russian Science Foundation [15-19-10017]

    Синтез мембран на основе нановолокон оксида алюминия и исследование их ионной селективности
[Текст] : статья / Д. В. Лебедев [и др.] // Мембраны и мембранные технологии. - 2017. - Т. 7, № 2. - С. 86-98, DOI 10.1134/S2218117217020031 . - ISSN 2218-1172

Аннотация: Предложен новый тип керамических мембран с ионной селективностью на основе нановолокон оксида алюминия (NafenTM), покрытых слоем углерода. Синтез мембран осуществляется методом вакуумной фильтрации коллоидного раствора волокон Nafen с последующим термическим отжигом и нанесением углеродного слоя методом химического осаждения из газовой фазы (chemical vapor deposition, CVD). Данные просвечивающей электронной микроскопии и спектроскопии комбинационного рассеяния подтверждают формирование углеродного слоя толщиной до 2 нм на нановолокнах. По данным низкотемпературной адсорбции азота, это приводит к уменьшению размера пор (максимум функции распределения смещается от 28 к 16 нм) и соответственному снижению пористости (с 75 до 62%) и удельной поверхности мембраны (с 146 до 107 м2 г–1). С помощью потенциометрического метода установлено, что нанесение углеродного слоя на мембраны из волокон Nafen придает им выраженные ионоселективные свойства. Измерения в водном растворе KCl показали, что полученные мембраны являются анион-селективными с числами переноса 0.94 для аниона и 0.06 для катиона. Определена плотность фиксированного заряда мембран путем аппроксимации экспериментальных данных моделью Теорелла–Мейера–Сиверса. Показано, что плотность заряда возрастает с увеличением концентрации электролита. Полученные мембраны могут быть применены в области нано- и ультрафильтрации, а также для разделения заряженных компонентов смесей. Нанесение проводящего углеродного слоя на поверхность пор является перспективным для создания мембран с управляемой ионной селективностью.
A novel type of ion-selective membranes based on NafenTM alumina nanofibers covered with carbon is proposed. The membranes are produced by filtration of Nafen nanofiber suspension through a porous support followed by drying and sintering. A thin carbon layer (up to 2 nm) is deposited on the nanofibers with the help of chemical vapor deposition (CVD). Its formation is confirmed by the results of Raman spectroscopy and visually observed in TEM images. According to low temperature nitrogen adsorption experiments, the formation of carbon layer leads to decreasing pore size (the maximum of pore size distribution shifts from 28 to 16 nm) and the corresponding decrease of porosity (from 75 to 62%) and specific surface area (from 146 to 107 m2 g–1). The measurement of membrane potential in an electrochemical cell shows that the deposition of carbon on the membrane results in high ionic selectivity. In an aqueous KCl solution, the membranes display high anion–selectivity with transference numbers 0.94 for anion and 0.06 for cation. The fixed charge density of membrane is determined by fitting the experimental data with the help of Teorell–Meyer–Sievers model. It is found that the density of fixed membrane charge increases with increasing the electrolyte concentration. The potential applications of produced membranes include nano- and ultrafiltration as well as separation of charged species in mixtures. The formation of conductive carbon layer on the pore surface can be employed for producing membranes with switchable ion-transport selectivity. Keywords: alumina nanofiber, membrane, chemical vapor deposition, carbon, membrane potential measurement, ionic permselectivity, Teorell–Meyer–Sievers model

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН, Академгородок 50-44, Красноярск, Россия
Институт химии и химической технологии СО РАН, Академгородок 50-24, Красноярск, Россия
Красноярский научный центр СО РАН, Академгородок 50, Красноярск, Россия
Национальный исследовательский университет “МИЭТ”, Площадь Шокина, 1, Зеленоград, Москва, Россия

Доп.точки доступа:
Лебедев, Д.В.; Шиверский, А.В.; Симунин, М.М.; Солодовниченко, В.С.; Парфенов, В.А.; Быканова, В.В.; Хартов, С.В.; Рыжков, И.И.

    Experimental and modelling study of ionic selectivity in carbon coated alumina nanofiber membranes
/ I. I. Ryzhkov [et al.] // Chemical Engineering Transactions : Italian Association of Chemical Engineering - AIDIC, 2017. - Vol. 60. - P253-258, DOI 10.3303/CET1760043 . -
Аннотация: A novel type of ion-selective membranes, which combine the advantages of ceramic nanofibrous media with good electrical conductivity, is proposed. The membranes are produced from Nafen alumina nanofibers (diameter around 10 nm) by filtration of nanofiber suspension through a porous support followed by drying and sintering. Electrical conductivity is achieved by depositing a thin carbon layer on the nanofibers by CVD. Raman spectroscopy and TEM are used to confirm the carbon structure formation. The average pore size determined by low temperature nitrogen adsorption experiments lies in the range 15-30 nm. Measurements of membrane potential show that the carbon coated membranes acquire high ionic selectivity (transference numbers 0.94 for anion and 0.06 for cation in aqueous KCl). The fixed membrane charge is determined by fitting the experimental data to Teorell-Meyer-Sievers and Space-charge models. © 2017, AIDIC Servizi S.r.l.

Scopus,
Смотреть статью

Держатели документа:
Institute of Computational Modelling SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russian Federation
Molecular Electronics Department KSC SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russian Federation
National Research University of Electronic Technology, MIET, Shokin square 1, Zelenograd, Moscow, Russian Federation
Institute of Chemistry and Chemical Technology SB RAS, Akademgorodok 50-24, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ryzhkov, I. I.; Lebedev, D. V.; Solodovnichenko, V. S.; Shiverskiy, A. V.; Simunin, M. M.; Parfenov, V. A.

    Carbon Coated Alumina Nanofiber Membranes for Selective Ion Transport
/ V. S. Solodovnichenko [et al.] // Adv. Eng. Mater. - 2017. - Vol. 19, Is. 11. - Ст. 1700244, DOI 10.1002/adem.201700244. - Cited References:60. - This work is supported by the Russian Science Foundation, Project 15-19-10017. The physicochemical analysis of materials was carried out on equipment of Krasnoyarsk Scientific Center of Shared Facilities SB RAS. . - ISSN 1438-1656. - ISSN 1527-2648
РУБ Materials Science, Multidisciplinary

Аннотация: The authors propose a novel type of ion-selective membranes, which combine the advantages of ceramic nanofibrous media with good electrical conductivity. The membranes are produced from Nafen alumina nanofibers (diameter around 10nm) by filtration of nanofiber suspension through a porous support followed by drying and sintering. Electrical conductivity is achieved by depositing a thin carbon layer on the nanofibers by chemical vapor deposition (CVD). Raman and FTIR spectroscopy, X-ray fluorescence analysis, and TEM are used to confirm the carbon structure formation. The deposition of carbon leads to decreasing porosity (from 75 to 62%) and specific surface area (from 146 to 107m(2) g(-1)) of membranes, while the pore size distribution maximum shifts from 28 to 16nm. Measurements of membrane potential in an electrochemical cell show that the carbon coated membranes acquire high ionic selectivity (transference numbers 0.94 for anion and 0.06 for cation in aqueous KCl). Fitting the membrane potential data by the Teorell-Meyer-Sievers model shows that the fixed membrane charge increases proportionally with increasing electrolyte concentration. The carbon coated membranes are ideally polarizable for applied voltages from -0.5 to +0.8V. The potential applications of produced membranes include nano- and ultrafiltration, separation of charged species, and switchable ion-transport selectivity.

WOS,
Смотреть статью

Держатели документа:
Inst Computat Modeling SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russia.
Fed Res Ctr KSC SB RAS, Akademgorodok 50, Krasnoyarsk, Russia.
Natl Res Univ Elect Technol MIET, Shokin Sq 1, Moscow, Russia.
Inst Chem & Chem Technol SB RAS, Akademgorodok 50-24, Krasnoyarsk, Russia.

Доп.точки доступа:
Solodovnichenko, Vera S.; Lebedev, Denis V.; Bykanova, Victoria V.; Shiverskiy, Alexey V.; Simunin, Mikhail M.; Parfenov, Vladimir A.; Ryzhkov, Ilya I.; Russian Science Foundation [15-19-10017]