Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 5

    Probing the blow-off criteria of hydrogen-rich 'super-Earths'
/ H. Lammer [et al.] // Mon. Not. Roy. Astron. Soc. - 2013. - Vol. 430, Is. 2. - P1247-1256, DOI 10.1093/mnras/sts705. - Cited References: 85. - NVE, KGK, MLK and HL acknowledge the support by the FWF NFN project S116 'Pathways to Habitability: From Disks to Active Stars, Planets and Life', and the related FWF NFN subprojects, S116 606-N16 'Magnetospheric Electrodynamics of Exoplanets' and S116607-N16 'Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions'. KGK, HL and PO thank also the Helmholtz Alliance project 'Planetary Evolution and Life'. ML and PO acknowledge support from the FWF project P22950-N16. NVE acknowledges support by the RFBR grant No 12-05-00152-a. The authors also acknowledge support from the EU FP7 project IMPEx (No. 262863) and the EUROPLANET-RI projects, JRA3/EMDAF and the Na2 science working group WG5. The authors thank the International Space Science Institute (ISSI) in Bern, and the ISSI team 'Characterizing stellar- and exoplanetary environments'. Finally, we thank an anonymous referee for interesting suggestions and recommendations which helped to improve the article. . - 10. - ISSN 0035-8711
РУБ Astronomy & Astrophysics

Аннотация: The discovery of transiting 'super-Earths' with inflated radii and known masses, such as Kepler-11b-f, GJ 1214b and 55 Cnc e, indicates that these exoplanets did not lose their nebula-captured hydrogen-rich, degassed or impact-delivered protoatmospheres by atmospheric escape processes. Because hydrodynamic blow-off of atmospheric hydrogen atoms is the most efficient atmospheric escape process we apply a time-dependent numerical algorithm which is able to solve the system of 1D fluid equations for mass, momentum and energy conservation to investigate the criteria under which 'super-Earths' with hydrogen-dominated upper atmospheres can experience hydrodynamic expansion by heating of the stellar soft X-rays and extreme ultraviolet (XUV) radiation and thermal escape via blow-off. Depending on orbit location, XUV flux, heating efficiency and the planet's mean density our results indicate that the upper atmospheres of all 'super-Earths' can expand to large distances, so that except for Kepler-11c all of them experience atmospheric mass-loss due to Roche lobe overflow. The atmospheric mass loss of the studied 'super-Earths' is one to two orders of magnitude lower compared to that of 'hot Jupiters' such as HD 209458b, so that one can expect that these exoplanets cannot lose their hydrogen envelopes during their remaining lifetimes.


Доп.точки доступа:
Lammer, H.; Erkaev, N.V.; Еркаев, Николай Васильевич; Odert, P.; Kislyakova, K.G.; Leitzinger, M.; Khodachenko, M.L.

    Origin and loss of nebula-captured hydrogen envelopes from 'sub'- to 'super-Earths' in the habitable zone of Sun-like stars
[Text] / H. . Lammer [et al.] // Mon. Not. Roy. Astron. Soc. - 2014. - Vol. 439, Is. 4. - P. 3225-3238, DOI 10.1093/mnras/stu085. - Cited References: 75. - The authors acknowledge the support by the FWF NFN project S11601-N16 'Pathways to Habitability: From Disks to Active Stars, Planets and Life', and the related FWF NFN subprojects, S 116 02-N16 'Hydrodynamics in Young Star-Disk Systems', S116 604-N16 'Radiation & Wind Evolution from T Tauri Phase to ZAMS and Beyond', and S116607-N16 'Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions'. KGK, YNK, HL, and PO thank also the Helmholtz Alliance project 'Planetary Evolution and Life'. ML and PO acknowledge support from the FWF project P22950-N16. NVE acknowledges support by the RFBR grant no. 12-05-00152-a. Finally, the authors thank the International Space Science Institute (ISSI) in Bern, and the ISSI team 'Characterizing stellar-and exoplanetary environments'. . - ISSN 0035-8711. - ISSN 1365-2966
РУБ Astronomy & Astrophysics

Аннотация: We investigate the origin and loss of captured hydrogen envelopes from protoplanets having masses in a range between 'sub-Earth'-like bodies of 0.1 M-circle plus and 'super-Earths' with 5 M-circle plus in the habitable zone at 1 au of a Sun-like G star, assuming that their rocky cores had formed before the nebula gas dissipated. We model the gravitational attraction and accumulation of nebula gas around a planet's core as a function of protoplanetary luminosity during accretion and calculate the resulting surface temperature by solving the hydrostatic structure equations for the protoplanetary nebula. Depending on nebular properties, such as the dust grain depletion factor, planetesimal accretion rates, and resulting luminosities, for planetary bodies of 0.1-1 M-circle plus we obtain hydrogen envelopes with masses between similar to 2.5 x 10(19) and 1.5 x 10(26) g. For 'super-Earths' with masses between 2 and 5 M-circle plus more massive hydrogen envelopes within the mass range of similar to 7.5 x 10(23)-1.5 x 10(28) g can be captured from the nebula. For studying the escape of these accumulated hydrogen-dominated protoatmospheres, we apply a hydrodynamic upper atmosphere model and calculate the loss rates due to the heating by the high soft-X-ray and extreme ultraviolet (XUV) flux of the young Sun/star. The results of our study indicate that under most nebula conditions 'sub-Earth' and Earth-mass planets can lose their captured hydrogen envelopes by thermal escape during the first similar to 100 Myr after the disc dissipated. However, if a nebula has a low dust depletion factor or low accretion rates resulting in low protoplanetary luminosities, it is possible that even protoplanets with Earth-mass cores may keep their hydrogen envelopes during their whole lifetime. In contrast to lower mass protoplanets, more massive 'super-Earths', which can accumulate a huge amount of nebula gas, lose only tiny fractions of their primordial hydrogen envelopes. Our results agree with the fact that Venus, Earth, and Mars are not surrounded by dense hydrogen envelopes, as well as with the recent discoveries of low density 'super-Earths' that most likely could not get rid of their dense protoatmospheres.

Полный текст (доступен только в локальной сети)

Держатели документа:
ИВМ СО РАН

Доп.точки доступа:
Lammer, H.; Stokl, A.; Erkaev, N.V.; Еркаев, Николай Васильевич; Dorfi, E.A.; Odert, P.; Gudel, M.; Kulikov, Y.N.; Kislyakova, K.G.; Leitzinger, M.; FWF NFN [S11601-N16, S 116 02-N16, S116 604-N16, S116607-N16]; FWF [P22950-N16]; RFBR [12-05-00152-a]

    Extreme hydrodynamic atmospheric loss near the critical thermal escape regime
[Text] / N. V. Erkaev [et al.] // Mon. Not. Roy. Astron. Soc. - 2015. - Vol. 448, Is. 2. - P1916-1921, DOI 10.1093/mnras/stv130. - Cited References:28. - The authors acknowledge the support by the FWF NFN project S11601-N16 'Pathways to Habitability: From Disks to Active Stars, Planets and Life', and the related FWF NFN subproject, S11607-N16 'Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions'. PO acknowledges support from the FWF project P22950-N16. NVE acknowledges support by the RFBR grant no. 15-05-00879-a. Finally, the authors thank the International Space Science Institute (ISSI) in Bern, and the ISSI team 'Characterizing stellar-and exoplanetary environments'. . - ISSN 0035-8711. - ISSN 1365-2966
РУБ Astronomy & Astrophysics

Аннотация: By considering martian-like planetary embryos inside the habitable zone of solar-like stars we study the behaviour of the hydrodynamic atmospheric escape of hydrogen for small values of the Jeans escape parameter beta < 3, near the base of the thermosphere, that is defined as a ratio of the gravitational and thermal energy. Our study is based on a 1D hydrodynamic upper atmosphere model that calculates the volume heating rate in a hydrogen-dominated thermosphere due to the absorption of the stellar soft X-ray and extreme ultraviolet (XUV) flux. In case of a monatomic gas, we find that when the beta value near the mesopause/homopause level exceeds a critical value of similar to 2.5, there exists a steady hydrodynamic solution with a smooth transition from subsonic to supersonic flow. For a fixed XUV flux, the escape rate of the upper atmosphere is an increasing function of the temperature at the lower boundary. Our model results indicate a crucial enhancement of the atmospheric escape rate, when the Jeans escape parameter beta decreases to this critical value. When beta becomes <= 2.5, there is no stationary hydrodynamic transition from subsonic to supersonic flow. This is the case of a fast non-stationary atmospheric expansion that results in extreme thermal atmospheric escape rates.

WOS,
Scopus,
Полный текст на сайте журнала

Держатели документа:
Inst Computat Modelling SB RAS, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria.
Graz Univ, Inst Phys, A-8010 Graz, Austria.
Russian Acad Sci, Polar Geophys Inst, Murmansk 183010, Russia.
ИВМ СО РАН

Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Lammer, H.; Odert, P.; Kulikov, Yu. N.; Kislyakova, K.G.; FWF NFN [S11601-N16, S11607-N16]; FWF [P22950-N16]; RFBR [15-05-00879-a]

    EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: The influences of ionization and orbital distance
/ N. V. Erkaev [et al.] // Mon. Not. R. Astron. Soc. - 2016. - Vol. 460, Is. 2. - P1300-1309, DOI 10.1093/mnras/stw935 . - ISSN 0035-8711
Аннотация: We investigate the loss rates of the hydrogen atmospheres of terrestrial planets with a range of masses and orbital distances by assuming a stellar extreme ultraviolet (EUV) luminosity that is 100 times stronger than that of the current Sun. We apply a 1D upper atmosphere radiation absorption and hydrodynamic escape model that takes into account ionization, dissociation and recombination to calculate hydrogen mass-loss rates. We study the effects of the ionization, dissociation and recombination on the thermal mass-loss rates of hydrogen-dominated super-Earths and compare the results to those obtained by the energy-limited escape formula which is widely used for mass-loss evolution studies. Our results indicate that the energy-limited formula can to a great extent over- or underestimate the hydrogen mass-loss rates by amounts that depend on the stellar EUV flux and planetary parameters such as mass, size, effective temperature and EUV absorption radius. © 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Computational Modelling SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, Graz, Austria
Institute for Astronomy, University of Vienna, Turkenschanzstrasse 17, Vienna, Austria

Доп.точки доступа:
Erkaev, N. V.; Lammer, H.; Odert, P.; Kislyakova, K. G.; Johnstone, C. P.; Gudel, M.; Khodachenko, M. L.

    Transit Lyman-alpha signatures of terrestrial planets in the habitable zones of M dwarfs
/ K. G. Kislyakova [et al.] // Astron. Astrophys. - 2019. - Vol. 623. - Ст. A131, DOI 10.1051/0004-6361/201833941. - Cited References:89. - We acknowledge the support by the Austria Science Fund (FWF) NFN project S116-N16 and the subprojects S11607-N16, S11606-N16 and S11604-N16. P.O., H.L., and N.V.E. acknowledge support from the Austrian Science Fund (FWF) project P25256-N27 "Characterizing Stellar and Exoplanetary Environments via Modeling of Lyman-alpha Transit Observations of Hot Jupiters". N.V.E. also acknowledges support by the RFBR grant No 16-52-14006. M.L.K. also acknowledges FWF projects I2939-N27 and the partial support by the Ministry of Education and Science of Russian federation (Grant No. RFMEFI61617X0084). I.F.S. acknowleges support of Russian Science Foundation project 18-12-00080. The software used in this work was in part developed by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago. This research was conducted using resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N), Umea University, Sweden. The authors are very thankful to Dr. David Ehrenreich for providing the Ly-alpha spectra of GJ 436b, which were used in this article. We would also like to sincerely thank Dr. Vincent Bourrier and Baptiste Lavie for original processing of these spectra. . - ISSN 1432-0746
РУБ Astronomy & Astrophysics

Аннотация: Aims. We modeled the transit signatures in the Lyman-alpha (Ly-alpha) line of a putative Earth-sized planet orbiting in the habitable zone (HZ) of the M dwarf GJ 436. We estimated the transit depth in the Ly-alpha line for an exo-Earth with three types of atmospheres: a hydrogen-dominated atmosphere, a nitrogen-dominated atmosphere, and a nitrogen-dominated atmosphere with an amount of hydrogen equal to that of the Earth. For all types of atmospheres, we calculated in-transit absorption they would produce in the stellar Ly-alpha line. We applied it to the out-of-transit Ly-alpha observations of GJ 436 obtained by the Hubble Space Telescope (HST) and compared the calculated in-transit absorption with observational uncertainties to determine if it would be detectable. To validate the model, we also used our method to simulate the deep absorption signature observed during the transit of GJ 436b and showed that our model is capable of reproducing the observations. Methods. We used a direct simulation Monte Carlo (DSMC) code to model the planetary exospheres. The code includes several species and traces neutral particles and ions. It includes several ionization mechanisms, such as charge exchange with the stellar wind, photo- and electron impact ionization, and allows to trace particles collisions. At the lower boundary of the DSMC model we assumed an atmosphere density, temperature, and velocity obtained with a hydrodynamic model for the lower atmosphere. Results. We showed that for a small rocky Earth-like planet orbiting in the HZ of GJ 436 only the hydrogen-dominated atmosphere is marginally detectable with the Space Telescope Imaging Spectrograph (STIS) on board the HST. Neither a pure nitrogen atmosphere nor a nitrogen-dominated atmosphere with an Earth-like hydrogen concentration in the upper atmosphere are detectable. We also showed that the Ly-alpha observations of GJ 436b can be reproduced reasonably well assuming a hydrogen-dominated atmosphere, both in the blue and red wings of the Ly-alpha line, which indicates that warm Neptune-like planets are a suitable target for Ly-alpha observations. Terrestrial planets, on the other hand, can be observed in the Ly-alpha line if they orbit very nearby stars, or if several observational visits are available.

WOS,
Смотреть статью,
Scopus,
РИНЦ

Держатели документа:
Univ Vienna, Dept Astrophys, Turkenschanzstr 17, A-1180 Vienna, Austria.
Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria.
Swedish Inst Space Phys, POB 812, S-98128 Kiruna, Sweden.
Russian Acad Sci, Inst Computat Modelling, Siberian Div, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
Inst Laser Phys SB RAS, Novosibirsk, Russia.

Доп.точки доступа:
Kislyakova, K. G.; Holmstrom, M.; Odert, P.; Lammer, H.; Erkaev, N., V; Khodachenko, M. L.; Shaikhislamov, I. F.; Dorfi, E.; Gudel, M.; Guedel, Manuel; Kislyakova, Kristina; Austria Science Fund (FWF) NFN project [S116-N16, S11606-N16, S11604-N16, S11607-N16]; Austrian Science Fund (FWF) [P25256-N27]; RFBR [16-52-14006]; FWF [I2939-N27]; Ministry of Education and Science of Russian federation [RFMEFI61617X0084]; Russian Science Foundation [18-12-00080]