Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 28

    Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices
[Text] / U.V. Amerstorfer [et al.] // Phys. Plasmas. - 2010. - Vol. 17, Is. 7. - Ст. 72901, DOI 10.1063/1.3453705. - Cited References: 26. - This work was supported by the FWF under Project No. P21051-N16 and also by the RFBR under Grant No. 09-05-91000-ANF_a. . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas

Аннотация: Results of two-dimensional nonlinear numerical simulations of the magnetohydrodynamic Kelvin-Helmholtz instability are presented. A boundary layer of a certain width is assumed, which separates the plasma in the upper layer from the plasma in the lower layer. A special focus is given on the influence of a density increase toward the lower layer. The evolution of the Kelvin-Helmholtz instability can be divided into three different phases, namely, a linear growth phase at the beginning, followed by a nonlinear phase with regular structures of the vortices, and finally, a turbulent phase with nonregular structures. The spatial scales of the vortices are about five times the initial width of the boundary layer. The considered configuration is similar to the situation around unmagnetized planets, where the solar wind (upper plasma layer) streams past the ionosphere (lower plasma layer), and thus the plasma density increases toward the planet. The evolving vortices might detach around the terminator of the planet and eventually so-called plasma clouds might be formed, through which ionospheric material can be lost. For the special case of a Venus-like planet, loss rates are estimated, which are of the order of estimated loss rates from observations at Venus. (C) 2010 American Institute of Physics. [doi:10.1063/1.3453705]


Доп.точки доступа:
Amerstorfer, U.V.; Erkaev, N.V.; Еркаев, Николай Васильевич; Taubenschuss, U.; Biernat, H.K.

    Shear driven waves in the induced magnetosphere of Mars
[Text] / H. Gunell [et al.] // Plasma Phys. Control. Fusion. - 2008. - Vol. 50, Is. 7. - Ст. 74018, DOI 10.1088/0741-3335/50/7/074018. - Cited References: 27 . - ISSN 0741-3335
РУБ Physics, Fluids & Plasmas + Physics, Nuclear

Аннотация: We present measurements of oscillations in the electron density, ion density and ion velocity in the induced magnetosphere of Mars. The fundamental frequency of the oscillations is a few millihertz, but higher harmonics are present in the spectrum. The oscillations are observed in a region where there is a velocity shear in the plasma flow. The fundamental frequency is in agreement with computational results from an ideal-MHD model. An interpretation based on velocity-shear instabilities is described.


Доп.точки доступа:
Gunell, H.; Amerstorfer, U.V.; Nilsson, H.; Grima, C.; Koepke, M.; Franz, M.; Winningham, J.D.; Frahm, R.A.; Sauvaud, J.A.; Fedorov, A.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Holmstrom, M.; Lundin, R.; Barabash, S.

    Solar wind flow past Venus and its implications for the occurrence of the Kelvin-Helmholtz instability
[Text] / H. K. Biernat [et al.] // Planet Space Sci. - 2007. - Vol. 55, Is. 12. - P1793-1803, DOI 10.1016/j.pss.2007.01.006. - Cited References: 28 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: In this paper, the solar wind flow around Venus is modeled as a nondissipative fluid which obeys the ideal magnetohydrodynamic equations extended for mass loading processes. The mass loading parameter is calculated for four different cases, corresponding to solar minimum and maximum XUV flux and to nominal and low solar wind velocity. We get smooth profiles of the field and plasma parameters in the magnetosheath. Based on the results of this flow model, we investigate the occurrence of the Kelvin-Helmholtz (K-H) instability at the equatorial flanks of the ionopause of Venus. By comparing the instability growth time with the propagation time of the K-H wave, we find that the K-H instability can evolve at the ionopause for all four solar wind conditions. (C) 2007 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич; Amerstorfer, U.V.; Penz, T.; Lichtenegger, H.I.M.

    Effectivity of the modified two stream instability operating in the vicinity of Venus
[Text] / D.Langmayr, N. V. Erkaev, H. K. Biernat // Planet Space Sci. - 2007. - Vol. 55, Is. 12. - P1804-1810, DOI 10.1016/j.pss.2007.01.017. - Cited References: 19 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: This paper is devoted to the application of the modified two stream or cross current instability (MTST) to the interaction of the solar wind and Venus. Two scenarios are presented providing favorable conditions for the excitation of the instability. For the first scenario, the free energy source of the MTSI is a significant gradient drift of the solar wind protons near the subsolar ionopause. The corresponding growth rates and frequencies of the MTSI are calculated within a full electromagnetic approach for a two-component plasma. The driving source of the second considered scenario consists in the relative drift velocity between solar wind and planetary particles. For modelling this situation, the dispersion equation for a four-component plasma is solved numerically. (C) 2007 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Langmayr, D.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.

    On Kelvin-Helmholtz instability due to the solar wind interaction with unmagnetized planets
[Text] / U. V. Amerstorfer [et al.] // Planet Space Sci. - 2007. - Vol. 55, Is. 12. - P1811-1816, DOI 10.1016/j.pss.2007.01.015. - Cited References: 20 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: In this paper, the Kelvin-Helmholtz instability is studied by solving the ideal MHD equations for a compressible plasma. A transition layer of finite thickness between two plasmas, across which the magnitude of the velocity and the density change, is assumed. Growth rates are presented for the transverse case, i.e., the flow velocity is perpendicular to the magnetic field. If only the velocity changes across the boundary layer and the density is kept constant, an important quantity affecting the growth of the Kelvin-Helmholtz instability is the magnetosonic Mach number, which characterizes compressibility. The growth rates for the case when both, the velocity and the density, change are very sensitive to the ratio of the upper plasma density to the lower plasma density: a decrease of the density ratio yields a decrease of the growth rate. Including a density profile is very important for the application of the Kelvin-Helmholtz instability to the solar wind flow around unmagnetized planets, e.g., Venus, where the plasma density increases from the magnetosheath to the ionosphere. (C) 2007 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Amerstorfer, U.V.; Erkaev, N.V.; Еркаев, Николай Васильевич; Langmayr, D.; Biernat, H.K.

    Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones
[Text] / H. . Lammer [et al.] // Astrobiology. - 2007. - Vol. 7, Is. 1. - P185-207, DOI 10.1089/ast.2006.0128. - Cited References: 104 . - ISSN 1531-1074
РУБ Astronomy & Astrophysics + Biology + Geosciences, Multidisciplinary

Аннотация: Atmospheric erosion Of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wavelengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 mu m band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O+ ion pick up at orbital distances <= 0.2 astronomical units. We have found that, when exposed to intense XUV fluxes, atmospheres with CO2/N-2 mixing ratios lower than 96% will show an increase in exospheric temperatures and expanded thermosphere-exosphere environments. Hence, they suffer stronger atmospheric erosion, which can result in the total loss of several hundred bars even if an exoplanet is protected by a "magnetic shield" with its boundary located at I Earth radius above the surface. Furthermore, our study indicates that magnetic moments of tidally locked Earth-like exoplanets are essential for protecting their expanded upper atmospheres because of intense XUV radiation against CME plasma erosion. Therefore, we suggest that larger and more massive terrestrial-type exoplanets may better protect their atmospheres against CMEs, because the larger cores of such exoplanets would generate stronger magnetic moments and their higher gravitational acceleration would constrain the expansion of their thermosphere-exosphere regions and reduce atmospheric escape.


Доп.точки доступа:
Lammer, H.; Lichtenegger, H.I.M.; Kulikov, Y.N.; Griessmeier, J.M.; Terada, N.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Khodachenko, M.L.; Ribas, I.; Penz, T.; Selsis, F.

    Aspects of solar wind interaction with Mars: comparison of fluid and hybrid simulations
[Text] / N. V. Erkaev [et al.] // Ann. Geophys. - 2007. - Vol. 25, Is. 1. - P145-159. - Cited References: 32 . - ISSN 0992-7689
РУБ Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: Mars has no global intrinsic magnetic field, and consequently the solar wind plasma interacts directly with the planetary ionosphere. The main factors of this interaction are: thermalization of plasma after the bow shock, ion pick-up process, and the magnetic barrier effect, which results in the magnetic field enhancement in the vicinity of the obstacle. Results of ideal magnetohydrodynamic and hybrid simulations are compared in the subsolar magnetosheath region. Good agreement between the models is obtained for the magnetic field and plasma parameters just after the shock front, and also for the magnetic field profiles in the magnetosheath. Both models predict similar positions of the proton stoppage boundary, which is known as the ion composition boundary. This comparison allows one to estimate applicability of magnetohydrodynamics for Mars, and also to check the consistency of the hybrid model with Rankine-Hugoniot conditions at the bow shock. An additional effect existing only in the hybrid model is a diffusive penetration of the magnetic field inside the ionosphere. Collisions between ions and neutrals are analyzed as a possible physical reason for the magnetic diffusion seen in the hybrid simulations.


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Bosswetter, A.; Motschmann, U.; Biernat, H.K.

    Plasma and magnetic field parameters in the vicinity of short-periodic giant exoplanets
[Text] / N. V. Erkaev [et al.] // Astrophys. J. Suppl. Ser. - 2005. - Vol. 157, Is. 2. - P396-401, DOI 10.1086/427904. - Cited References: 48 . - ISSN 0067-0049
РУБ Astronomy & Astrophysics

Аннотация: During the past years, more than 130 giant planets were discovered in extrasolar planetary systems. Because of the fact that the orbital distances are very close to their host stars, these planets are embedded in a dense stellar wind, which can pick up planetary ions. We model the stellar wind interaction of the short-periodic exoplanets OGLE-TR-56b and HD 209458b at their orbital distances of approximate to 0.023 AU and approximate to 0.045 AU, by calculating the Alfven Mach number and the magnetosonic Mach number in the stellar wind plasma flow. We then analyze the different plasma interaction regimes around the planetary obstacles, which appear for different stellar wind parameters. Our study shows that the stellar wind plasma parameters like temperature, interplanetary magnetic field, particle density, and velocity near planetary obstacles at orbital distances closer than 0.1-0.2 AU have conditions such that no bow shocks evolve. Our study shows also that these close-in exoplanets are in a submagnetosonic regime comparable to the magnetospheric plasma interaction of the inner satellites of Jupiter and Saturn. Furthermore, we compare the results achieved for both exoplanets with the Jupiter-class exoplanet HD 28185b at its orbital distance of approximate to 1.03 AU. Finally, we also discuss the behavior of the stellar wind plasma flow close to the planetary obstacles of two highly eccentric gas giants, namely, HD 108147b and HD 162020b. Because of their eccentric orbits, these two exoplanets periodically experience both regimes with and without a bow shock. Finally, we simulate the neutral gas density of HD 209458b with a Monte Carlo model. By using the plasma parameters obtained in our study we calculate the ion production and loss rate of H+ with a test particle model. Our simulations yield H+ loss rates for HD 209458b or similar giant exoplanets in orders of about 10(8)-10(9) g s(-1). These ion loss rates are at least 1 order of magnitude lower than the observed loss rate of evaporating neutral H atoms. Our study indicates, that similar gas giants at larger orbital distances have lower ion loss rates. Thus, the dominating component of particle loss of short-periodic Jupiter-class exoplanets will be neutral hydrogen.


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Penz, T.; Lammer, H.; Lichtenegger, H.I.M.; Biernat, H.K.; Wurz, P.; Griessmeier, J.M.; Weiss, W.W.

    Stellar-planetary relations: Atmospheric stability as a prerequisite for planetary habitability
[Text] / H. Lammer [et al.] // Celest. Mech. Dyn. Astron. - 2005. - Vol. 92, Is. 01.03.2013. - P273-285, DOI 10.1007/s10569-005-0004-4. - Cited References: 27 . - ISSN 0923-2958
РУБ Astronomy & Astrophysics + Mathematics, Interdisciplinary Applications

Аннотация: The region around a star where a life-supporting biosphere can evolve is the so-called Habitable Zone (HZ). The current definition of the HZ is based only on the mass-luminosity relation of the star and climatological and meteorological considerations of Earth-like planets, but neglects atmospheric loss processes due to the interaction with the stellar radiation and particle environment. From the knowledge of the planets in the Solar System, we know that planets can only evolve into a habitable world if they have a stable orbit around its host star and if they keep the atmosphere and water inventory during: (i) the period of heavy bombardment by asteroids and comets and (ii) during the host stars' active X-ray and extreme ultraviolet (XUV) and stellar wind periods. Impacts play a minor role for planets with the size and mass like Earth, while high XUV fluxes and strong stellar winds during the active periods of the young host star can destroy the atmospheres and water inventories. We show that XUV produced temperatures in the upper atmospheres of Earth-like planets can lead to hydrodynamic "blow off", resulting in the total loss of the planets water inventory and atmosphere, even if their orbits lie inside the HZ. Further, our study indicates that Earth-like planets inside the HZ of low mass stars may not develop an atmosphere, because at orbital distances closer than 0.3 AU, their atmospheres are highly affected by strong stellar winds and coronal mass ejections (CME's). Our study suggests that planetary magnetospheres will not protect the atmosphere of such planets, because the strong stellar wind of the young star can compress the magnetopause to the atmospheric obstacle. Moreover, planets inside close-in HZ's are tidally locked, therefore, their magnetic moments are weaker than those of an Earth-like planet at 1 AU. Our results indicate that Earth-like planets in orbits of low mass stars may not develop stable biospheres. From this point of view, a HZ, where higher life forms like on Earth may evolve is possibly restricted to higher mass K stars and G stars.


Доп.точки доступа:
Lammer, H.; Kulikov, Y.N.; Penz, T.; Leitner, M.; Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич

    Planetary ENA imaging: Venus and a comparison with Mars
[Text] / H. Gunell [et al.] // Planet Space Sci. - 2005. - Vol. 53, Is. 4. - P433-441, DOI 10.1016/j.pss.2004.07.021. - Cited References: 21 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: We present simulated images of energetic neutral atoms (ENAs) produced in charge exchange collisions between solar wind protons and neutral atoms in the exosphere of Venus, and make a comparison with earlier results for Mars. The images are found to be dominated by two local maxima. One produced by charge exchange collisions in the solar wind, upstream of the bow shock, and the other close to the dayside ionopause. The simulated ENA fluxes at Venus are lower than those obtained in similar simulations of ENA images at Mars at solar minimum conditions, and close to the fluxes at Mars at solar maximum. Our numerical study shows that the ENA flux decreases with an increasing ionopause altitude. The influence of the Venus nighttime hydrogen bulge on the ENA emission is small. (C) 2004 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Gunell, H.; Holmstrom, M.; Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич

    A comparison of magnetohydrodynamic instabilities at the Martian ionopause
[Text] / T. Penz [et al.] ; ed.: O. Witasse // PLANETARY ATMOSPHERES, IONOSPHERES, AND MAGNETOSPHERES. Ser. ADVANCES IN SPACE RESEARCH : ELSEVIER SCIENCE LTD, 2005. - Vol. 36: 35th COSPAR Scientific Assembly (JUL 18-25, 2004, Paris, FRANCE), Is. 11. - P2049-2056, DOI 10.1016/j.asr.2004.11.039. - Cited References: 20 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: It is known from Pioneer Venus measurements that at the Venusian ionopause wave-like structures develop, which can detach in the form of ionospheric plasma clouds. This phenomenon is assumed to occur due to the Kelvin-Helmholtz instability, which can appear in large regions of the Venusian ionopause. Recent studies of Mars Global Surveyor measurements indicate that wave-like structures and plasma clouds also detach from the Martian ionopause. Therefore, these features seem to be common for the solar wind interaction of non-magnetized planets. We study the conditions at the Martian ionopause with respect to the occurrence of several MHD instabilities. The conditions in the magnetosheath are modeled by a semi-analytical MHD simulation that includes mass loading. The ionospheric parameter needed for the model calculations are taken from a global hybrid model. The stability of the Martian ionopause against the Kelvin-Helmholtz, the Rayleigh-Taylor, and the interchange instability is analyzed. Further, we suggest that including the Hall term in the description of the Kelvin-Helmholtz instability gives a current in the planetary boundary layer resulting in a shear flow compared with the ionospheric plasma, which can lead to an unstable boundary layer near the subsolar point. Since the interchange instability depends on the curvature of the magnetic field lines, we additionally study the influence of the strong curvature of the Martian ionopause due to the localized, remnant, crustal magnetism appearing mainly in the southern hemisphere of Mars. (c) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Penz, T.; Arshukova, I.L.; Terada, N.; Shinagawa, H.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Lammer, H.; Witasse, O. \ed.\

    Ion loss on Mars caused by the Kelvin-Helmholtz instability
[Text] / T. Penz [et al.] // Planet Space Sci. - 2004. - Vol. 52, Is. 13. - P1157-1167, DOI 10.1016/j.pss.2004.06.001. - Cited References: 53 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: Mars Global Surveyor detected cold electrons above the Martian ionopause, which can be interpreted as detached ionospheric plasma clouds. Similar observations by the Pioneer Venus Orbiter electron temperature probe showed also extreme spatial irregularities of electrons in the form of plasma clouds on Venus, which were explained by the occurrence of the Kelvin-Helmholtz instability. Therefore, we suggest that the Kelvin-Helmholtz instability may also detach ionospheric plasma clouds on Mars. We investigate the instability growth rate at the Martian ionopause resulting from the flow of the solar wind for the case where the interplanetary magnetic field is oriented normal to the flow direction. Since the velocity shear near the subsolar point is very small, this area is stable with respect to the Kelvin-Helmholtz instability. We found that the highest flow velocities are reached at the equatorial flanks near the terminator plane, while the maximum plasma density in the terminator plane appears at the polar areas. By comparing the instability growth rate with the magnetic barrier formation time, we found that the instability can evolve into a non-linear stage at the whole terminator plane but preferably at the equatorial flanks. Escape rates of O+ ions due to detached plasma clouds in the order of about 2 x 10(23)-3 x 10(24) s(-1) are found. Thus, atmospheric loss caused by the Kelvin-Helmholtz instability should be comparable with other non-thermal loss processes. Further, we discuss our results in view of the expected observations of heavy ion loss rates by ASPERA-3 on board of Mars Express. (C) 2004 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Penz, T.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Lammer, H.; Amerstorfer, U.V.; Gunell, H.; Kallio, E.; Barabash, S.; Orsini, S.; Milillo, A.; Baumjohann, W.

    Interchange instability of the Venusian ionopause
[Text] / I. L. Arshukova [et al.] ; ed. E. Kallio // PLANETARY ATMOSPHERES, IONOSPHERES AND PLASMA INTERACTIONS. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2004. - Vol. 33: 2nd World Space Congress/34th COSPAR Scientific Assembly (OCT 10-19, 2002, HOUSTON, TEXAS), Is. 2. - P182-186, DOI 10.1016/j.asr.2003.04.015. - Cited References: 12 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences
Рубрики:
MAGNETOSHEATH
   FLOW

Кл.слова (ненормированные):
solar wind interation with planets -- lonosheath -- lonopause -- magnetic barrier -- interchange instability

Аннотация: Within the magnetohydrodynamic (MHD) approach, the interchange instability is studied for the subsolar magnetosheath of Venus. The instability analysis considers the profiles of magnetic field and plasma parameters between the bow shock and the ionopause which are obtained from the numerical MHD solution of the solar wind flow around the ionosphere. With the Fourier transformations, the linearized MILD equations are reduced to a second-order differential equation for the total pressure perturbation as a function of the normal distance from the ionopause. This equation is integrated numerically, and the interchange instability growth rate is obtained as a function of the wave number. The instability growth time is found to be smaller than the time scale of magnetic barrier formation. (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Arshukova, I.L.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Vogl, D.F.; Kallio, E. \ed.\

    MHD effects in the Venus magnetosheath including mass loading
[Text] / H. K. Biernat, N. V. Erkaev, C. J. Farrugia // PLANETARY MAGNETOSPHERES. Ser. ADVANCES IN SPACE RESEARCH : ELSEVIER SCIENCE BV, 2001. - Vol. 28: D3 1/C3 3 Symposium of COSPAR Scientific Commission D held at the 33rd COSPAR Scientific Assembly (JUL, 2000, WARSAW, POLAND), Is. 6. - P833-839, DOI 10.1016/S0273-1177(01)00525-7. - Cited References: 12 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences
Рубрики:
FLOW

Аннотация: We use the "magnetic string" approach to integrate the dissipationless MHD equations for a 3-D flow around planetary obstacles, and apply it to some aspects of the flow in the magnetosheath of Venus. Our method has both analytical and numerical components, and is particularly suited to study the structure of the magnetic barrier (depletion layer). Including pick-up processes, we study the contribution to the structure of the Venus magnetosheath made by the pick-up ions. As one main conclusion, we show that the used method leads to a stand-off bow shock position which in good agreement with observations. (C) 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.


Доп.точки доступа:
Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич; Farrugia, C.J.

    MHD effects of the solar wind flow around planets
[Text] / H. K. Biernat [et al.] // Nonlinear Process Geophys. - 2000. - Vol. 7: 24th General Assembly of the European-Geophysical-Society (APR 19-23, 1999, THE HAGUE, NETHERLANDS), Is. 03.04.2013. - P201-209. - Cited References: 34 . - ISSN 1023-5809
РУБ Geochemistry & Geophysics + Meteorology & Atmospheric Sciences

Аннотация: The study of the interaction of the solar wind with magnetized and unmagnetized planets forms a central topic of space research. Focussing on planetary magnetosheaths, we review some major developments in this field. Magnetosheath structures depend crucially on the orientation of the interplanetary magnetic field, the solar wind Alfven Mach number, the shape of the obstacle (axisymmetric/non-axisymmetric, etc.), the boundary conditions at the magnetopause (low/high magnetic shear), and the degree of thermal anisotropy of the plasma. We illustrate the cases of Earth, Jupiter and Venus. The terrestrial magnetosphere is axisymmetric and has been probed in situ by many spacecraft. Jupiter's magnetosphere is highly non-axisymmetric. Furthermore, we study magnetohydrodynamic effects in the Venus magnetosheath.


Доп.точки доступа:
Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич; Farrugia, C.J.; Vogl, D.F.; Schaffenberger, W.

    MHD effects in the Venus magnetosheath
[Text] / H. K. Biernat, N. V. Erkaev, C. J. Farrugia // PLANETARY IONOSPHERES AND MAGNETOSPHERES. Ser. ADVANCES IN SPACE RESEARCH : ELSEVIER SCIENCE BV, 2000. - Vol. 26: C3 2/D0 9 Symposium of COSPAR Scientific Commission C/B0 5 Symposium of COSPAR Svcientific Commission B held during the 32nd COSPAR Scintific Assembly (JUL, 1998, NAGOYA, JAPAN), Is. 10. - P1587-1591, DOI 10.1016/S0273-1177(00)00085-5. - Cited References: 11 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: We study features of flow around Venus using a numerical algorithm to integrate the dissipationless magnetohydrodynamic (MHD) equations, which includes from the start magnetic forces on the flow. We show first that, contrary to previous estimates based on gas dynamics, for a reasonable Alfven Mach number the MI-ID-modelled subsolar magnetosheath is nearly as thick as that obtained from observations. Concentrating next on the region off the subsolar line we present model results for the variation of all plasma and field parameters along paths normal to the ionopause for different values of the solar zenith angle. (C) 2000 COSPAR. Published by Elsevier Science Ltd. All rights reserved.


Доп.точки доступа:
Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич; Farrugia, C.J.

    Aspects of MHD flow about Venus
[Text] / H. K. Biernat, N. V. Erkaev, C. J. Farrugia // J. Geophys. Res-Space Phys. - 1999. - Vol. 104, Is. A6. - P12617-12626, DOI 10.1029/1999JA900032. - Cited References: 37 . - ISSN 0148-0227
РУБ Astronomy & Astrophysics

Аннотация: We describe the "magnetic string" approach to integrating the dissipationless magnetohydrodynamic (MHD) equations for flow around planetary obstacles and apply it to some aspects of the flow in the magnetosheath of Venus. Our method has both analytical and numerical components and is particularly suited to study the structure of the magnetic barrier (depletion layer). We do not include ion pickup processes and thus discuss only the contribution to the structure of the Venus magnetosheath made by the flow of the shocked solar wind. We work with an interplanetary magnetic field which is directed orthogonal to the solar wind bulk velocity. Magnetic forces on the flow are strongly dependent on the Alfven Mach number upstream of the bow shock, and one aim of this work is to study the dependence of field and flow quantities in the Venus magnetosheath on this parameter, thus allowing further future comparisons with data under a variety of interplanetary conditions. A second aim is to compare our MHD model results to a? synopsis of observations made by the Pioneer Venus Orbiter. As one main conclusion, we show that this method leads, in principle, to a standoff bow shock position in good agreement with observations. We find, namely, that for a low but reasonable Alfven Mach number, our MHD-modeled magnetosheath is only similar to 3.6% thinner in the Sun-Venus direction than that given by observations. Our method is complementary to three-dimensional, global MHD simulations of the solar wind-Venus interaction and offers versatility to modeling other aspects of the complicated interaction of the solar wind with Venus.


Доп.точки доступа:
Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич; Farrugia, C.J.

    Loss of hydrogen and oxygen from the upper atmosphere of Venus
[Text] / H. Lammer [et al.] // Planet Space Sci. - 2006. - Vol. 54, Is. 13-14. - P1445-1456, DOI 10.1016/j.pss.2006.04.022. - Cited References: 93 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: Atmospheric escape from the upper atmosphere of Venus is mainly influenced by the loss of hydrogen and oxygen caused by the interaction of solar radiation and particle flux with the unprotected planetary environment. Because one main aim of the ASPERA-4 particle/plasma and VEX-MAG magnetic field experiments on board of ESA's forthcoming Venus Express mission is the investigation of atmospheric erosion processes from the planet's ionosphere-exosphere environment, we study the total loss of hydrogen and oxygen and identified the efficiency of several escape mechanisms involved. For the estimation of pick up loss rates we use a gas dynamic test particle model and obtained average loss rates for H+, and O+ pick up ions of about 1 x 10(25) s(-1) and about 1.6 x 10(25) s(-1), respectively. Further, we estimate ion loss rates due to detached plasma clouds, which were observed by the pioneer Venus orbiter and may be triggered by the Kelvin-Helmholtz instability of about 0.5-1 x 10(25) s(-1). Thermal atmospheric escape processes and atmospheric loss by photo-chemically produced oxygen atoms yield negligible loss rates. Sputtering by incident pick up O+ ions give O atom loss rates in the order of about 6 x 10(24) s(-1). On the other hand, photo-chemically produced hot hydrogen atoms are a very efficient loss mechanism for hydrogen on Venus with a global average total loss rate of about 3.8 x 10(25) s(-1), which is in agreement with Donahue and Hartle [1992. Solar cycle variations in H+ and D+ densities in the Venus ionosphere: implications for escape. Geophys. Res. Lett. 12, 2449-2452] and of the same order but less than the estimated H+ ion outflow on the Venus nightside of about 7.0 x 10(25) s(-1) due to acceleration by an outward electric polarization force related to ionospheric holes by Hartle and Grebowsky [1993. Light ion flow in the nightside ionosphere of Venus. J. Geophys. Res. 98, 7437-7445]. Our study indicates that on Venus, due to its larger mass and size compared to Mars, the most relevant atmospheric escape processes of oxygen involve ions and are caused by the interaction with the solar wind. The obtained results indicate that the ratio between H/O escape to space from the Venusian upper atmosphere is about 4, and is in a much better agreement with the stoichiometrically H/O escape ratio of 2:1, which is not the case on Mars. However, a detailed analysis of the outflow of ions from the Venus upper atmosphere by the ASPERA-4 and VEX-MAG instruments aboard Venus Express will lead to more accurate atmospheric loss estimations and a better understanding of the planet's water inventory. (c) 2006 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Lammer, H.; Lichtenegger, H.I.M.; Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич; Arshukova, I.L.; Kolb, C.; Gunell, H.; Lukyanov, A.; Holmstrom, M.; Barabash, S.; Zhang, T.L.; Baumjohann, W.

    Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations?
[Text] / H. . Lammer [et al.] // Astron. Astrophys. - 2009. - Vol. 506, Is. 1. - P399-410, DOI 10.1051/0004-6361/200911922. - Cited References: 46. - The authors thank the anonymous referee for constructive comments and suggestions which helped to improve the paper. H. Lammer, P. Odert, M. Leitzinger, M. L. Khodachenko and A. Hanslmeier gratefully acknowledge the Austrian Fonds zur Forderung der wissenschaftlichen Forschung (FWF grant P19446) for supporting this project. M. Panchenko and M. L. Khodachenko acknowledge also the Austrian Fonds zur Forderung der wissenschaftlichen Forschung (project P20680-N16). H. Lammer, H. I. M. Lichtenegger, H. K. Biernat, Yu. N. Kulikov and N. V. Erkaev thank the AAS "Verwaltungsstelle fur Auslandsbeziehungen" and the RAS. H. Lammer, H. I. M. Lichtenegger, M. L. Khodachenko and Yu. N. Kulikov acknowledge support from the Helmholtz-Gemeinschaft as this research has been supported by the Helmholtz Association through the research alliance "Planetary Evolution and Life". H. Lammer, M. L. Khodachenko, T. Penz, and Yu. N. Kulikov also acknowledge the International Space Science Institute (ISSI; Bern, Switzerland) and the ISSI teams "Evolution of Habitable Planets" and "Evolution of Exoplanet Atmospheres and their Characterization". H. K. Biernat acknowledges additional support due to the Austrian Science Fund under project P20145-N16. The authors also acknowledge fruitful discussions during various meetings related to the Europlanet N2 activities as well as within the N2 Exoplanet discipline working group DWG 7. T. Penz and G. Micela acknowledge support by the Marie Curie Fellowship Contract No. MTKD-CT-2004-002769 of the project "The influence of stellar high radiation on planetary atmospheres". The authors also thank the Austrian Ministry bm:bwk and ASA for funding the CoRoT project. . - ISSN 0004-6361
РУБ Astronomy & Astrophysics

Аннотация: Aims. We study the possible atmospheric mass loss from 57 known transiting exoplanets around F, G, K, and M-type stars over evolutionary timescales. For stellar wind induced mass loss studies, we estimate the position of the pressure balance boundary between Coronal Mass Ejection (CME) and stellar wind ram pressures and the planetary ionosphere pressure for non- or weakly magnetized gas giants at close orbits. Methods. The thermal mass loss of atomic hydrogen is calculated by a mass loss equation where we consider a realistic heating efficiency, a radius-scaling law and a mass loss enhancement factor due to stellar tidal forces. The model takes into account the temporal evolution of the stellar EUV flux by applying power laws for F, G, K, and M-type stars. The planetary ionopause obstacle, which is an important factor for ion pick-up escape from non- or weakly magnetized gas giants is estimated by applying empirical power-laws. Results. By assuming a realistic heating efficiency of about 10-25% we found that WASP-12b may have lost about 6-12% of its mass during its lifetime. A few transiting low density gas giants at similar orbital location, like WASP-13b, WASP-15b, CoRoT-1b or CoRoT-5b may have lost up to 1-4% of their initial mass. All other transiting exoplanets in our sample experience negligible thermal loss (<= 1%) during their lifetime. We found that the ionospheric pressure can balance the impinging dense stellar wind and average CME plasma flows at distances which are above the visual radius of "Hot Jupiters", resulting in mass losses <2% over evolutionary timescales. The ram pressure of fast CMEs cannot be balanced by the ionospheric plasma pressure for orbital distances between 0.02-0.1 AU. Therefore, collisions of fast CMEs with hot gas giants should result in large atmospheric losses which may influence the mass evolution of gas giants with masses
Scopus,
Смотреть статью


Доп.точки доступа:
Lammer, H.; Odert, P.; Leitzinger, M.; Khodachenko, M.L.; Panchenko, M.; Kulikov, Y.N.; Zhang, T.L.; Lichtenegger, H.I.M.; Erkaev, N.V.; Еркаев, Николай Васильевич; Wuchterl, G.; Micela, G.; Penz, T.; Biernat, H.K.; Weingrill, J.; Steller, M.; Ottacher, H.; Hasiba, J.; Hanslmeier, A.; Austrian Fonds zur Forderung der wissenschaftlichen Forschung [P19446, P20680-N16]; Helmholtz Association; Austrian Science Fund [P20145-N16]; "The influence of stellar high radiation on planetary atmospheres" [MTKD-CT-2004-002769]

    The Kelvin-Helmholtz instability at Venus: What is the unstable boundary?
[Text] / U. V. Mostl [et al.] // Icarus. - 2011. - Vol. 216, Is. 2. - P476-484, DOI 10.1016/j.icarus.2011.09.012. - Cited References: 27. - This work is supported by the Austrian Science Fund Project P21051-N16 and also by RFBR Grant No. 09-05-91000-ANF_a. H.L. and H.G. are supported by the Helmholtz Association through the research alliance "Planetary Evolution and Life" and by the Austrian Science Fund Project I199-N16. M.Z. and D.K. are supported by the Austrian Science Fund Project I193-N16. . - ISSN 0019-1035
РУБ Astronomy & Astrophysics

Аннотация: The Kelvin-Helmholtz instability gained scientific attention after observations at Venus by the spacecraft Pioneer Venus Orbiter gave rise to speculations that the instability contributes to the loss of planetary ions through the formation of plasma clouds. Since then, a handful of studies were devoted to the Kelvin-Helmholtz instability at the ionopause and its implications for Venus. The aim of this study is to investigate the stability of the two instability-relevant boundary layers around Venus: the induced magnetopause and the ionopause. We solve the 2D magnetohydrodynamic equations with the total variation diminishing Lax-Friedrichs algorithm and perform simulation runs with different initial conditions representing the situation at the boundary layers around Venus. Our results show that the Kelvin-Helmholtz instability does not seem to be able to reach its nonlinear vortex phase at the ionopause due to the very effective stabilizing effect of a large density jump across this boundary layer. This seems also to be true for the induced magnetopause for low solar activity. During high solar activity, however, there could occur conditions at the induced magnetopause which are in favour of the nonlinear evolution of the instability. For this situation, we estimated roughly a growth rate for planetary oxygen ions of about 7.6 x 10(25) s(-1), which should be regarded as an upper limit for loss due to the Kelvin-Helmholtz instability. (C) 2011 Elsevier Inc. All rights reserved.


Доп.точки доступа:
Mostl, U.V.; Erkaev, N.V.; Еркаев, Николай Васильевич; Zellinger, M.; Lammer, H.; Groller, H.; Biernat, H.K.; Korovinskiy, D.