Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 99
   В3
   E68

    Ideal Magnetohydrodynamic Flow Around a Blunt Body under Anisotropic Pressure
[Text]. - Electronic data (106 Kb)
. - Режим доступа: http://icm.krasn.ru/refextra.php?id=1472. - Электрон. версия печ. публикации . - Режим доступа: http://library.krasn.ru/trudy/2000/1472erkaev_PHP03413_eng.pdf (Полный текст) : статья / Erkaev N.V., Biernat H.K., Farrugia C.J. - Electronic data (106 Kb) // Physics of Plasmas. - 2000. - Vol. 7, № 7. - p. 3413-3420
ГРНТИ

Аннотация: The plasma flow past a blunt obstacle in an ideal magnetohydrodynamic ~MHD! model is studied, taking into account the tensorial nature of the plasma pressure. Three different closure relations are explored and compared with one another. The first one is the adiabatic model proposed by Chew, Goldberger, and Low. The second closure is based on the mirror instability criterion, while the third depends on an empirical closure equation obtained from observations of solar wind flow past the Earth's magnetosphere. The latter is related with the criterion of the anisotropic ion cyclotron instability. In the presented model, the total pressure, defined as the sum of magnetic pressure and perpendicular plasma pressure, is assumed to be a known function of Cartesian coordinates. The calculation is based on the Newtonian approximation for the total pressure along the obstacle and on a quadratic behavior with distance from the obstacle along the normal direction. Profiles of magnetic field strength and plasma parameters are presented along the stagnation stream line between the shock and obstacle of an ideal plasma flow with anisotropy in thermal pressure and temperature.

http://icm.krasn.ru/refextra.php?id=1472,
Полный текст

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Biernat, H.K.; Farrugia, C.J.; Еркаев, Николай Васильевич
   В65
   Е718

    Обтекание солнечным ветром магнитосферы Земли
[] = A solar wind flowing over the Earth's magnetosphere : библиография / Отв. ред. М. И. Пудовкин, В. С. Семенов. - М. : Междуведомств. геофиз. ком., 1989. - 130 с. : ил ; 26 см. - (Результаты исследований по международным геофизическим проектам / Междувед. геофиз. ком. при президиуме АН СССР). - Библиогр.: с. 126-128. - 500 экз. - 1.60 р.
ББК 22.652.8



Доп.точки доступа:
Пудовкин, М. И. \ред.\; Семенов, В. С. \ред.\; Erkaev N.V. 64417093/К
Свободных экз. нет

    Features of the interaction of interplanetary coronal mass ejections/magnetic clouds with the Earth's magnetosphere
/ C. J. Farrugia [et al.] // J. Atmos. Sol.-Terr. Phys. - 2013. - Vol. 99. - P14-26, DOI 10.1016/j.jastp.2012.11.014. - Cited References: 53. - C.J.F. is supported by NASA Grant NNX10AQ29G and NSF Grant AGS-1140211. N.V.E. acknowledges support from Austrian Science Fund Project I193-N16 and RFBR Grant no 12-05-00152-a. N.L. acknowledges support from NSF Grant AGS-1140211. Work at LANL was conducted under the auspices of the U.S. Department of Energy with partial support from NASA and NSF. . - 13. - ISSN 1364-6826
РУБ Geochemistry & Geophysics + Meteorology & Atmospheric Sciences

Аннотация: The interaction of interplanetary coronal mass ejections (ICMEs) and magnetic clouds (MCs) with the Earth's magnetosphere exhibits various interesting features principally due to interplanetary parameters which change slowly and reach extreme values of long duration. These, in turn, allow us to explore the geomagnetic response to continued and extreme driving of the magnetosphere. In this paper we shall discuss elements of the following: (i) anomalous features of the flow in the terrestrial magnetosheath during ICME/MC passage and (ii) large geomagnetic disturbances when total or partial mergers of ICMEs/MCs pass Earth. In (i) we emphasize two roles played by the upstream Alfven Mach number in solar wind-magnetosphere interactions: (i) It gives rise to wide plasma depletion layers. (ii) It enhances the magnetosheath flow speed on draped magnetic field lines. (By plasma depletion layer we mean a magnetosheath region adjacent to the magnetopause where magnetic forces dominate over hydrodynamic forces.) In (ii) we stress that the ICME mergers elicit geoeffects over and above those of the individual members. In addition, features of the non-linear behavior of the magnetosphere manifest themselves. (C) 2012 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Farrugia, C.J.; Erkaev, N.V.; Еркаев, Николай Васильевич; Jordanova, V.K.; Lugaz, N.; Sandholt, P.E.; Muhlbachler, S.; Torbert, R.B.

    Conditions at the magnetopause of Saturn and implications for the solar wind interaction
[Text] : статья / M.Desroche [et al.] // J. Geophys. Res-Space Phys. - 2013. - Vol. 118, Is. 6. - P3087-3095, DOI 10.1002/jgra.50294. - Cited References: 43. - The authors thank Chris Arridge for initially suggesting this project. The authors are thankful to Adam Masters, Bob Ergun, Jack Gosling, Martin Goldman, and Dmitri Uzdensky for helpful discussions and guidance. This work was supported by NASA's NESSF program. N.V. Erkaev acknowledges support by the RFBR grant No 12-05-00152-a. . - 9. - ISSN 2169-9380
РУБ Astronomy & Astrophysics

Аннотация: Using idealized models of the magnetosheath and magnetospheric magnetic fields, plasma densities, and plasma flow, we test for the steady state viability of processes mediating the interaction between the solar wind and the magnetosphere of Saturn. The magnetopause is modeled as an asymmetric paraboloid with a standoff distance of approximate to 25R(S). We test where on the magnetopause surface largescale reconnection may be affected by either a shear flow or diamagnetic drift due to a pressure gradient across the magnetopause boundary. We also test for the onset of the KelvinHelmholtz instability. We find that, for the solar wind and magnetosphere states considered, reconnection is inhibited on the dawn flank due to the large shear flows in this region. Additionally, most of the dawn and dusk equatorial region of the magnetopause is KelvinHelmholtz unstable, due to the presence of the dense magnetospheric plasma sheet and weak magnetic fields on either side of the magnetopause. This study is a followup to a previously published study of the solar wind interaction with Jupiter's magnetosphere.


Доп.точки доступа:
Desroche, M.; Bagenal, F.; Delamere, P.A.; Erkaev, N.V.; Еркаев, Николай Васильевич; NASA's NESSF program; RFBR [12-05-00152-a]

    Deep Solar Activity Minimum 2007-2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere
/ C. J. Farrugia [et al.] // Sol. Phys. - 2012. - Vol. 281, Is. 1. - pp. 461-489, DOI 10.1007/s11207-012-0119-1. - Cited References: 53 . - 29. - ISSN 0038-0938
РУБ Astronomy & Astrophysics

Аннотация: We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007-2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A. We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfv,n Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind-magnetosphere interactions. We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from Wind and ground-based observations: i) the dayside contribution to the cross-polar cap potential (CPCP), and ii) the shapes of the magnetopause and bow shock. For i) we find a low interplanetary electric field of 1.3 +/- 0.9 mV m(-1) and a CPCP of 37.3 +/- 20.2 kV. The auroral activity is closely correlated to the prevalent stream-stream interactions. We suggest that the Alfven wave trains in the fast streams and Kelvin-Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For ii) we determine 328 magnetopause and 271 bow shock crossings made by Geotail, Cluster 1, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey. We use the same numerical approach as in Fairfield's (J. Geophys. Res. 76, 7600, 1971) empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 R-E and 14.35 R-E, respectively. When comparing with Fairfield's (1971) classic result, we find that the subsolar magnetosheath is thinner by similar to 1 R-E. This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause. The magnetopause is more flared than in Fairfield's model. By contrast the bow shock is less flared, and the latter is the result of weaker MHD forces.

Полный текст


Доп.точки доступа:
Farrugia, C.J.; Harris, B.; Leitner, M.; Mostl, C.; Galvin, A.B.; Simunac, K.D.C.; Torbert, R.B.; Temmer, M.B.; Veronig, A.M.; Erkaev, N.V.; Еркаев, Николай Васильевич; Szabo, A.; Ogilvie, K.W.; Luhmann, J.G.; Osherovich, V.A.

    Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction
/ M. Desroche [et al.] // J. Geophys. Res-Space Phys. - 2012. - Vol. 117. - Ст. A07202, DOI 10.1029/2012JA017621. - Cited References: 50. - The authors thank Chris Arridge for initially suggesting this project. The authors are thankful to Adam Masters, Bob Ergun, Jack Gosling, Martin Goldman, and Dmitri Uzdensky for helpful discussions and guidance. This work was supported by NASA's NESSF program and JUNO mission. . - ISSN 0148-0227
РУБ Astronomy & Astrophysics

Аннотация: Using idealized models of the magnetosheath and magnetosphere magnetic fields, plasma densities, and plasma flow, we test for the steady state viability of processes mediating the interaction between the solar wind and the Jovian magnetosphere. The magnetopause is modeled as an asymmetric paraboloid with variable asymmetry. The subsolar standoff of the magnetopause has been shown to exhibit a bimodal probability distribution (Joy et al., 2002). Only the expanded magnetopause is considered, with a standoff of similar to 90 R-J. We test where on the magnetopause surface large-scale reconnection may be affected by either a shear flow or diamagnetic drift due to a pressure gradient across the magnetopause boundary. We also test for the onset of the Kelvin-Helmholtz instability. We find that reconnection is inhibited on the dawn flank due to the large shear flows in this region, regardless of magnetopause shape or interplanetary magnetic field orientation. The presence of a high energy plasma population in the magnetosphere may inhibit reconnection over much of the magnetopause area, except when the fields are antiparallel. Additionally, most of the dawn flank of the magnetopause is Kelvin-Helmholtz unstable, regardless of magnetopause asymmetry; and the dusk flank tailward of the planet is Kelvin-Helmholtz unstable when the magnetopause is highly oblate.


Доп.точки доступа:
Desroche, M.; Bagenal, F.; Delamere, P.A.; Erkaev, N.V.; Еркаев, Николай Васильевич

    Accelerated magnetosheath flows caused by IMF draping: Dependence on latitude
/ N. V. Erkaev [et al.] // Geophys. Res. Lett. - 2012. - Vol. 39. - Ст. L01103, DOI 10.1029/2011GL050209. - Cited References: 16. - This work was done while NVE was on a research visit to the Space Science Center of UNH. This work is supported by RFBR grant N 09-05-91000-ANF_a, and also by the Austrian "Fonds zur Forderung der wissenschaftlichen Forschung" under Project I 193-N16 and the "Verwaltungsstelle fur Auslandsbeziehungen" of the Austrian Academy of Sciences. Work by CJF was supported by NASA grants NNX10AQ29G and NNX08AD11G. . - ISSN 0094-8276
РУБ Geosciences, Multidisciplinary

Аннотация: In previous work we used a semi-analytical treatment to describe accelerated magnetosheath flows caused by the draping of interplanetary magnetic field (IMF) lines around the magnetosphere. Here, we use the same approach, i.e., modeling the magnetic field lines as elastic strings, to examine how the magnetic tension force, one of the two agents responsible for producing these flows, varies along field lines away from the equatorial plane. The bend in the field line caused by the draping mechanism propagates as two oppositely-directed waves to higher latitudes. For a due northward IMF - the case we consider here - these propagate symmetrically north/south of the equatorial plane. As a result, a two-peaked latitude velocity profile develops as we go further downtail and the velocity peaks migrate along the magnetic field line to higher latitudes. We examine this velocity-profile for two Alfven Mach numbers (M-A = 8 and 3), representative of conditions in the solar wind at 1 AU ("normal" solar wind and solar transients). Qualitatively, the picture is the same but quantitatively there are important differences: (i) the flows reach higher values for the lower M-A (maximum V/V-SW = 1.6) than for the higher M-A (V/V-SW = 1.3); (ii) asymptotic values are reached farther downstream of the dawn-dusk terminator for the lower M-A (similar to-50 R-E vs -15 R-E); (iii) For the lower M-A the highest speeds are reached away from the equatorial plane. We predict two channels of fast magnetosheath flow next to the magnetopause at off-equatorial latitudes that exceed the solar wind speed. Citation: Erkaev, N. V., C. J. Farrugia, A. V. Mezentsev, R. B. Torbert, and H. K. Biernat (2012), Accelerated magnetosheath flows caused by IMF draping: Dependence on latitude, Geophys. Res. Lett., 39, L01103, doi:10.1029/2011GL050209.

Полный текст


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Farrugia, C.J.; Mezentsev, A.V.; Torbert, R.B.; Biernat, H.K.

    Kinetic Alfven wave instability in a Lorentzian dusty magnetoplasma
[Text] / N. Rubab [et al.] // Phys. Plasmas. - 2010. - Vol. 17, Is. 10. - Ст. 103704, DOI 10.1063/1.3491336. - Cited References: 54. - This work is funded by the Higher Education Commission of Pakistan under the HEC-Overseas scholarship program Grant No. Ref: 1-1/PM OS /Phase-II/Batch-I/Austria/2007/. Part of this work was done while N. V. Erkaev was at the Space Research Institute of the Austrian Academy of Sciences in Graz. This work is also supported due to the RFBR Grant No. 09-05-91000-ANF-a. Further support is due to the "Austrian Fonds zur Forderung der Wissenschaftlichen Forschung" under Grant No. P20145-N16. . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas

Аннотация: This study presents a theoretical approach to analyze the influence of kappa distributed streaming ions and magnetized electrons on the plasma wave propagation in the presence of dust by employing two-potential theory. In particular, analytical expressions under certain conditions are derived for various modes of propagation comprising of kinetic Alfven wave streaming instability, two stream instability, and dust acoustic and whistler waves. A dispersion relation for kinetic Alfven-like streaming instability has been derived. The effects of dust particles and Lorentzian index on the growth rates and the threshold streaming velocity for the excitation of the instability are examined. The streaming velocity is observed to be destabilizing for slow motion and stabilizing for fast streaming motions. It is also observed that the presence of magnetic field and superthermal particles hinders the growth rate of instability. Possible applications to various space and astrophysical situations are discussed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3491336]


Доп.точки доступа:
Rubab, N.; Erkaev, N.V.; Еркаев, Николай Васильевич; Langmayr, D.; Biernat, H.K.

    Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at X =-12 Re
[Text] / C.J. Farrugia [et al.] // J. Geophys. Res-Space Phys. - 2010. - Vol. 115. - Ст. A08227, DOI 10.1029/2009JA015128. - Cited References: 34. - The authors would like to thank David Burgess for helpful discussions. Part of this work was done when NVE was on a research visit to the Space Science Center of the University of New Hampshire, USA. This work is supported by NASA grants NNX08AD11G and NNG06GD41G, and also by RFBR grants 07-05-00135, 09-05-91000-ANF_a and by Program 16 of RAS. R. P. Lin has been supported in part by NASA grant NNX08AE34G at UC Berkeley, and the WCU grant (R31-10016) funded by the Korean Ministry of Education, Science and Technology. We thank D. J. McComas and H. J. Singer for the ACE plasma data and GOES magnetic field data, respectively, obtained through NASA cdaweb site. . - ISSN 0148-0227
РУБ Astronomy & Astrophysics

Аннотация: While there are many approximations describing the flow of the solar wind past the magnetosphere in the magnetosheath, the case of perfectly aligned (parallel or antiparallel) interplanetary magnetic field (IMF) and solar wind flow vectors can be treated exactly in a magnetohydrodynamic (MHD) approach. In this work we examine a case of nearly-opposed (to within 15) interplanetary field and flow vectors, which occurred on October 24-25, 2001 during passage of the last interplanetary coronal mass ejection in an ejecta merger. Interplanetary data are from the ACE spacecraft. Simultaneously Wind was crossing the near-Earth (X similar to -13 Re) geomagnetic tail and subsequently made an approximately 5-hour-long magnetosheath crossing close to the ecliptic plane (Z = -0.7 Re). Geomagnetic activity was returning steadily to quiet, "ground" conditions. We first compare the predictions of the Spreiter and Rizzi theory with the Wind magnetosheath observations and find fair agreement, in particular as regards the proportionality of the magnetic field strength and the product of the plasma density and bulk speed. We then carry out a small-perturbation analysis of the Spreiter and Rizzi solution to account for the small IMF components perpendicular to the flow vector. The resulting expression is compared to the time series of the observations and satisfactory agreement is obtained. We also present and discuss observations in the dawnside boundary layer of pulsed, high-speed (v similar to 600 km/s) flows exceeding the solar wind flow speeds. We examine various generating mechanisms and suggest that the most likely cause is a wave of frequency 3.2 mHz excited at the inner edge of the boundary layer by the Kelvin-Helmholtz instability.


Доп.точки доступа:
Farrugia, C.J.; Erkaev, N.V.; Еркаев, Николай Васильевич; Torbert, R.B.; Biernat, H.K.; Gratton, F.T.; Szabo, A.; Kucharek, H.; Matsui, H.; Lin, R.P.; Ogilvie, K.W.; Lepping, R.P.; Smith, C.W.

    Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices
[Text] / U.V. Amerstorfer [et al.] // Phys. Plasmas. - 2010. - Vol. 17, Is. 7. - Ст. 72901, DOI 10.1063/1.3453705. - Cited References: 26. - This work was supported by the FWF under Project No. P21051-N16 and also by the RFBR under Grant No. 09-05-91000-ANF_a. . - ISSN 1070-664X
РУБ Physics, Fluids & Plasmas

Аннотация: Results of two-dimensional nonlinear numerical simulations of the magnetohydrodynamic Kelvin-Helmholtz instability are presented. A boundary layer of a certain width is assumed, which separates the plasma in the upper layer from the plasma in the lower layer. A special focus is given on the influence of a density increase toward the lower layer. The evolution of the Kelvin-Helmholtz instability can be divided into three different phases, namely, a linear growth phase at the beginning, followed by a nonlinear phase with regular structures of the vortices, and finally, a turbulent phase with nonregular structures. The spatial scales of the vortices are about five times the initial width of the boundary layer. The considered configuration is similar to the situation around unmagnetized planets, where the solar wind (upper plasma layer) streams past the ionosphere (lower plasma layer), and thus the plasma density increases toward the planet. The evolving vortices might detach around the terminator of the planet and eventually so-called plasma clouds might be formed, through which ionospheric material can be lost. For the special case of a Venus-like planet, loss rates are estimated, which are of the order of estimated loss rates from observations at Venus. (C) 2010 American Institute of Physics. [doi:10.1063/1.3453705]


Доп.точки доступа:
Amerstorfer, U.V.; Erkaev, N.V.; Еркаев, Николай Васильевич; Taubenschuss, U.; Biernat, H.K.

    The role of magnetic handedness in magnetic cloud propagation
[Text] / U. Taubenschuss [et al.] // Ann. Geophys. - 2010. - Vol. 28, Is. 5. - pp. 1075-1100, DOI 10.5194/angeo-28-1075-2010. - Cited References: 92. - The author appreciates financial support on behalf of the projects 06/9690 from the Austrian Research Community and A3-12T63/2007-1 from the Styrian government. Participation at the ISSS8 was made possible due to the travel fellowship of UCLA. Nikolai Erkaev acknowledges support by RFBR grants Nos. 07-05-00135 and 09-05-91000-ANF. Charles Farrugia received NASA grants NNG06GD41G and NNX08AD11G. Christian Mostl and Ute Amerstorfer work under FWF projects P20145N16 and P21051-N16 of the Austrian Science Foundation, respectively. . - ISSN 0992-7689
РУБ Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: We investigate the propagation of magnetic clouds (MCs) through the inner heliosphere using 2.5-D ideal magnetohydrodynamic (MHD) simulations. A numerical solution is obtained on a spherical grid, either in a meridional plane or in an equatorial plane, by using a Roe-type approximate Riemann solver in the frame of a finite volume approach. The structured background solar wind is simulated for a solar activity minimum phase. In the frame of MC propagation, special emphasis is placed on the role of the initial magnetic handedness of the MC's force-free magnetic field because this parameter strongly influences the efficiency of magnetic reconnection between the MC's magnetic field and the interplanetary magnetic field. Magnetic clouds with an axis oriented perpendicular to the equatorial plane develop into an elliptic shape, and the ellipse drifts into azimuthal direction. A new feature seen in our simulations is an additional tilt of the ellipse with respect to the direction of propagation as a direct consequence of magnetic reconnection. During propagation in a meridional plane, the initial circular cross section develops a concave-outward shape. Depending on the initial handedness, the cloud's magnetic field may reconnect along its backside flanks to the ambient interplanetary magnetic field (IMF), thereby losing magnetic flux to the IMF. Such a process in combination with a structured ambient solar wind has never been analyzed in detail before. Furthermore, we address the topics of force-free magnetic field conservation and the development of equatorward flows ahead of a concave-outward shaped MC. Detailed profiles are presented for the radial evolution of magnetoplasma and geometrical parameters. The principal features seen in our MHD simulations are in good agreement with in-situ measurements performed by spacecraft. The 2.5-D studies presented here may serve as a basis under more simple geometrical conditions to understand more complicated effects seen in 3-D simulations.


Доп.точки доступа:
Taubenschuss, U.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Farrugia, C.J.; Mostl, C.; Amerstorfer, U.V.

    Numerical algorithm for studying wind flows two-dimensional in the vertical plane in stratified reservoirs
[Text] / V.M. Belolipetskii, P.V. Belolipetskii // Russ. J. Numer. Anal. Math. Model. - 2010. - Vol. 25, Is. 1. - pp. 1-14, DOI 10.1515/RJNAMM.2010.001. - Cited References: 13. - The work was supported by the Russian Foundation for Basic Research (07-01-00153) and Interdisciplinary Project No. 95 of the Siberian Branch of the Russian Academy of Sciences. . - ISSN 0927-6467
РУБ Engineering, Multidisciplinary + Mathematics, Applied

Аннотация: A system of equations of geophysical hydrothermodynamics of the ocean in the Boussinesq, hydrostatic, and 'rigid lid' approximations is used for description of stratified flows in landlocked reservoirs. A numerical algorithm is considered for flows two-dimensional in the vertical plane. This algorithm is based on the method of splitting with respect to physical processes, the finite element method, and the upstream difference scheme. The numerical algorithm has been checked on test problems. The model was used for determination of wind circulation and vertical distributions of temperature and salinity in the Shira Lake. The results of numerical modelling are in good agreement with actual data.


Доп.точки доступа:
Belolipetskii, V.M.; Белолипецкий, Виктор Михайлович; Belolipetskii, P.V.; Белолипецкий, Павел Викторович

    Observational aspects of IMF draping-related magnetosheath accelerations for northward IMF
[Text] / B.Harris [et al.] // Ann. Geophys. - 2013. - Vol. 31, Is. 10. - P1779-1789, DOI 10.5194/angeo-31-1779-2013. - Cited References: 26. - Work at UNH is supported by NASA Grants NNX10AQ29G and NNX13AP39G. N. V. Erkaev is supported by grant No. 12-05-00152-a from the Russian Foundation of Basic Research. . - ISSN 0992-7689
РУБ Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: Acceleration of magnetosheath plasma resulting from the draping of the interplanetary magnetic field (IMF) around the magnetosphere can give rise to flow speeds that exceed that of the solar wind (V-SW) by up to similar to 60%. Three case event studies out of 34 identified events are described. We then present a statistical study of draping-related accelerations in the magnetosheath. Further, we compare the results with the recent theory of Erkaev et al. (2011, 2012). We present a methodology to help distinguish draping-related accelerations from those caused by magnetic reconnection. To rule out magnetopause reconnection at low latitudes, we focus mainly on the positive B-z phase during the passage of interplanetary coronal mass ejections (ICMEs), as tabulated in Richardson and Cane (2010) for 1997-2009, and adding other events from 2010. To avoid effects of high-latitude reconnection poleward of the cusp, we also consider spacecraft observations made at low magnetic latitudes. We study the effect of upstream Alfven Mach number (M-A) and magnetic local time (MLT) on the speed ratio V/V-SW. The comparison with theory is good. Namely, (i) flow speed ratios above unity occur behind the dawn-dusk terminator, (ii) those below unity occur on the dayside magnetosheath, and (iii) there is a good general agreement in the dependence of the V ratio on M-A.


Доп.точки доступа:
Harris, B.; Farrugia, C.J.; Erkaev, N.V.; Еркаев, Николай Васильевич; Torbert, R.B.; NASA [NNX10AQ29G, NNX13AP39G]; Russian Foundation of Basic Research [12-05-00152-a]

    XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen coronae and ion escape
/ K. G. Kislyakova [et al.] // Astrobiology. - 2013. - Vol. 13, Is. 11. - P1030-1048, DOI 10.1089/ast.2012.0958 . - ISSN 1531-1074

Кл.слова (ненормированные):
Early atmospheres -- Earth-like exoplanets -- Energetic neutral atoms -- Habitability -- Ion escape -- Low-mass stars -- Stellar activity

Аннотация: We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R Earth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s-1 to ∼5.3×1030 s-1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to <3 EOH and usually is several times smaller in comparison to the thermal atmospheric escape rates. © 2013 Mary Ann Liebert, Inc.

Scopus

Держатели документа:
Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042 Graz, Austria
Institute of Physics, University of Graz, Graz, Austria
Swedish Institute of Space Physics, Kiruna, Sweden
Institute of Computational Modelling, Siberian Division of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
SINP, Moscow State University, Moscow, Russian Federation
Polar Geophysical Institute (PGI), Russian Academy of Sciences, Murmansk, Russian Federation
Institute of Astrophysics, University of Vienna, Austria
ИВМ СО РАН

Доп.точки доступа:
Kislyakova, K.G.; Lammer, H.; Holmstrom, M.; Panchenko, M.; Odert, P.; Erkaev, N.V.; Еркаев, Николай Васильевич; Leitzinger, M.; Khodachenko, M.L.; Kulikov, Y.N.; Gudel, M.; Hanslmeier, A.

    A slow mode transition region adjoining the front boundary of a magnetic cloud as a relic of a convected solar wind feature: Observations and MHD simulation
[Text] / C. J. Farrugia [et al.] // J. Geophys. Res-Space Phys. - 2008. - Vol. 113. - Ст. A00B01, DOI 10.1029/2007JA012953. - Cited References: 38 . - ISSN 0148-0227
РУБ Astronomy & Astrophysics

Аннотация: We identify a planar, pressure-balanced structure bounded by sharp changes in the dynamic pressure plastered against the front boundary of the magnetic cloud which passed Earth on 20 November 2003. The front boundary of the magnetic cloud (MC) is particularly well-defined in this case, being located where the He(++)/H(+) number density ratio jumps from 4 to 10% for the first time and the proton plasma beta decreases sharply from similar to 1 to similar to 0.001. The feature, estimated to have a length scale similar to 50 RE in the Sun-Earth direction, bears close resemblance to a slow mode transition region in that the magnetic pressure decreases, the plasma pressure increases, and their temporal variations are anticorrelated. Using a 2-D MHD simulation, we hypothesize that a pressure-balanced structure was encountered by the MC en route to Earth. Our calculations reproduce qualitatively the major features of the observations. Using a simplified geometry suggested by the observations, we find that the lateral deflection speed of the plasma is less than the lateral expansion speed of the MC. We infer that the structure traversed the MC sheath in similar to 20 h, consistent with its crossing of the MC's shock at 0.6-0.7 AU. The finding is consistent with the recent paradigm according to which solar wind plasma and magnetic field tend to pile up in front of interplanetary ejecta because the expansion of the ejecta hinders the shocked solar wind plasma from deflecting effectively around the object. Also, the inferred "age'' of the layer contiguous to the surface of the MC, the earliest relic of its passage through the inner heliosphere, is in agreement with general estimates.


Доп.точки доступа:
Farrugia, C.J.; Erkaev, N.V.; Еркаев, Николай Васильевич; Taubenschuss, U.; Shaidurov, V.A.; Smith, C.W.; Biernat, H.K.

    Mass loss from "Hot Jupiters" - Implications for CoRoT discoveries, Part II: Long time thermal atmospheric evaporation modeling
[Text] / T. Penza [et al.] // Planet Space Sci. - 2008. - Vol. 56, Is. 9. - P1260-1272, DOI 10.1016/j.pss.2008.04.005. - Cited References: 53 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: We investigate the efficiency of the atmospheric mass loss due to hydrodynamic blow-off over the lifetime of the exoplanet HD209458b by studying numerically its hydrogen wind for host star X-ray and EUV (XUV) fluxes between 1 and 100 times that of the present Sun. We apply a time-dependent numerical algorithm which is able to solve the system of hydrodynamic equations straight through the transonic point of the flow including Roche lobe effects. The mass loss rates are calculated as functions of the absorbed energy in the thermosphere. Depending on the heating efficiency for a hydrogen-rich thermosphere the maximum temperature obtained in our study at 1.5R(p1) by neglecting IR cooling is about 5000-10,000 K for heating efficiencies of 10% and 60%, respectively. We find that the upper atmosphere of HD209458b experiences hydrodynamic blow-off even at such low temperatures if one does not neglect gravitational effects caused by the proximity of the planet to its Roche lobe boundary. Depending on the heating efficiency, we find from the solution of the hydrodynamic equations of mass, momentum, and energy balance that energy-limited mass loss rate estimations overestimate the realistic mass loss rate at present time for HD209458b by several times. Using the maximum heating efficiency for hydrogen-rich atmospheres of 60% we find that HD209458b may experience an atmospheric mass loss rate at present time of about 3.5 x 10(10) g s(-1). The mass loss rate evolves to higher values for higher XUV fluxes expected during the early period of the planet's host star evolution, reaching values of several times 10(12) gs(-1). The integrated mass loss is found to be between 1.8% and 4.4% of the present mass of HD209458b. We found that the influence of the stellar tidal forces on atmospheric loss (the Roche lobe effect) is not significant at 0.045 AU. For a similar exoplanet, but at closer orbital distances <= 0.02 AU, the combined effect of the Roche lobe and the high XUV radiation result in much higher thermal loss rates of about 2.6 x 10(11) g s(-1) and even more for early stages. This leads to a total loss over 4 Gyr of 27.5% of the planetary mass. (c) 2008 Elsevier Ltd. All rights reserved.

Полный текст на сайте правообладателя


Доп.точки доступа:
Penza, T.; Erkaev, N.V.; Еркаев, Николай Васильевич; Kulikov, Y.N.; Langmayr, D.; Lammer, H.; Micela, G.; Cecchi-Pestellini, C.; Biernat, H.K.; Selsis, F.; Barge, P.; Deleuil, M.; Leger, A.

    Shear driven waves in the induced magnetosphere of Mars
[Text] / H. Gunell [et al.] // Plasma Phys. Control. Fusion. - 2008. - Vol. 50, Is. 7. - Ст. 74018, DOI 10.1088/0741-3335/50/7/074018. - Cited References: 27 . - ISSN 0741-3335
РУБ Physics, Fluids & Plasmas + Physics, Nuclear

Аннотация: We present measurements of oscillations in the electron density, ion density and ion velocity in the induced magnetosphere of Mars. The fundamental frequency of the oscillations is a few millihertz, but higher harmonics are present in the spectrum. The oscillations are observed in a region where there is a velocity shear in the plasma flow. The fundamental frequency is in agreement with computational results from an ideal-MHD model. An interpretation based on velocity-shear instabilities is described.


Доп.точки доступа:
Gunell, H.; Amerstorfer, U.V.; Nilsson, H.; Grima, C.; Koepke, M.; Franz, M.; Winningham, J.D.; Frahm, R.A.; Sauvaud, J.A.; Fedorov, A.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Holmstrom, M.; Lundin, R.; Barabash, S.

    Solar wind flow past Venus and its implications for the occurrence of the Kelvin-Helmholtz instability
[Text] / H. K. Biernat [et al.] // Planet Space Sci. - 2007. - Vol. 55, Is. 12. - P1793-1803, DOI 10.1016/j.pss.2007.01.006. - Cited References: 28 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: In this paper, the solar wind flow around Venus is modeled as a nondissipative fluid which obeys the ideal magnetohydrodynamic equations extended for mass loading processes. The mass loading parameter is calculated for four different cases, corresponding to solar minimum and maximum XUV flux and to nominal and low solar wind velocity. We get smooth profiles of the field and plasma parameters in the magnetosheath. Based on the results of this flow model, we investigate the occurrence of the Kelvin-Helmholtz (K-H) instability at the equatorial flanks of the ionopause of Venus. By comparing the instability growth time with the propagation time of the K-H wave, we find that the K-H instability can evolve at the ionopause for all four solar wind conditions. (C) 2007 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич; Amerstorfer, U.V.; Penz, T.; Lichtenegger, H.I.M.

    Effectivity of the modified two stream instability operating in the vicinity of Venus
[Text] / D.Langmayr, N. V. Erkaev, H. K. Biernat // Planet Space Sci. - 2007. - Vol. 55, Is. 12. - P1804-1810, DOI 10.1016/j.pss.2007.01.017. - Cited References: 19 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: This paper is devoted to the application of the modified two stream or cross current instability (MTST) to the interaction of the solar wind and Venus. Two scenarios are presented providing favorable conditions for the excitation of the instability. For the first scenario, the free energy source of the MTSI is a significant gradient drift of the solar wind protons near the subsolar ionopause. The corresponding growth rates and frequencies of the MTSI are calculated within a full electromagnetic approach for a two-component plasma. The driving source of the second considered scenario consists in the relative drift velocity between solar wind and planetary particles. For modelling this situation, the dispersion equation for a four-component plasma is solved numerically. (C) 2007 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Langmayr, D.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.

    On Kelvin-Helmholtz instability due to the solar wind interaction with unmagnetized planets
[Text] / U. V. Amerstorfer [et al.] // Planet Space Sci. - 2007. - Vol. 55, Is. 12. - P1811-1816, DOI 10.1016/j.pss.2007.01.015. - Cited References: 20 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: In this paper, the Kelvin-Helmholtz instability is studied by solving the ideal MHD equations for a compressible plasma. A transition layer of finite thickness between two plasmas, across which the magnitude of the velocity and the density change, is assumed. Growth rates are presented for the transverse case, i.e., the flow velocity is perpendicular to the magnetic field. If only the velocity changes across the boundary layer and the density is kept constant, an important quantity affecting the growth of the Kelvin-Helmholtz instability is the magnetosonic Mach number, which characterizes compressibility. The growth rates for the case when both, the velocity and the density, change are very sensitive to the ratio of the upper plasma density to the lower plasma density: a decrease of the density ratio yields a decrease of the growth rate. Including a density profile is very important for the application of the Kelvin-Helmholtz instability to the solar wind flow around unmagnetized planets, e.g., Venus, where the plasma density increases from the magnetosheath to the ionosphere. (C) 2007 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Amerstorfer, U.V.; Erkaev, N.V.; Еркаев, Николай Васильевич; Langmayr, D.; Biernat, H.K.