Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 18
   В3
   I70

    Investigation of MHD slow shocks propagating along the Io flux tube
[Text] : статья / N.V. Erkaev [et al.] // International journal of geomagnetism and aeronomy. - 2002. - Vol. 3, № 1. - p. 67-76

Аннотация: One aspect of the Io-Jupiter interaction studied by many authors is the generation of Alfv_en waves by Io moving in the magnetized plasma. In our study, we focus on an additional mechanism of the interaction between Io and Jupiter based on MHD slow shocks propagating from Io toward Jupiter along a magnetic ux tube. These MHD slow shocks are produced by plasma ow injected by Io, which is considered as a source of ionized particles. The propagation of the slow shocks is calculated along a given magnetic ux tube from Io to Jupiter. The total pressure is assumed to be a known function of the distance measured along the tube. It is determined as the magnetic pressure corresponding to the undisturbed Jovian magnetic field calculated in a dipole approximation. The material coordinates are used to describe the plasma ow along the magnetic tube. The peculiarity of this problem stems from the fact that the total pressure increases by a factor of 105, whereas the cross section of the magnetic ux tube decreases by a factor of 300. The result is that the plasma velocity after the shock front substantially increases toward Jupiter with increasing magnetic pressure. The electric potential difference along the magnetic field is estimated, which is produced by the accelerated plasma ow propagating with the MHD slow shocks.

http://icm.krasn.ru/refextra.php?id=2436,
Полный текст

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Semenov, V.S.; Семенов В. С.; Shaidurov, V.A.; Шайдуров В.А.; Langmayr, D.; Biernat, H.K.; Rucker, H.O.
   В3
   E68

    Effects of MHD shocks propagating along magnetic flux tubes in a dipole magnetic field
[Text] : статья / N.V. Erkaev, V.A. Shaidurov, V.S. Semenov, H.K. Biernat // Nonlinear Processes in Geophysics. - 2002. - Vol. 9. - p. 163-172

Аннотация: Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the mag-netic flux tube decreases enormously with increasing mag-netic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically us-ing the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing mag-netic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter be-ing considered as a source of plasma pressure pulses.

http://icm.krasn.ru/refextra.php?id=2437,
Полный текст

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Shaidurov, V.A.; Шайдуров В.А.; Semenov, V.S.; Семенов В. С.; Biernat, H.K.; Еркаев, Николай Васильевич

    Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles
/ A. E. Ershov [et al.] // Applied Physics B: Lasers and Optics. - 2013. - P1-14, DOI 10.1007/s00340-013-5636-6 . - ISSN 0946-2171

Аннотация: We propose an optodynamical model of interaction of pulsed laser radiation with aggregates of spherical metallic nanoparticles embedded into host media. The model takes into account polydispersity of particles, pair interactions between the particles, dissipation of absorbed energy, heating and melting of the metallic core of particles and of their polymer adsorption layers, and heat exchange between electron and ion components of the particle material as well as heat exchange with the interparticle medium. Temperature dependence of the electron relaxation constant of the particle material and the effect of this dependence on interaction of nanoparticles with laser radiation are first taken into consideration. We study in detail light-induced processes in the simplest resonant domains of multiparticle aggregates consisting of two particles of an arbitrary size in aqueous medium. Optical interparticle forces are realized due to the light-induced dipole interaction. The dipole moment of each particle is calculated by the coupled dipole method (with correction for the effect of higher multipoles). We determined the role of various interrelated factors leading to photomodification of resonant domains and found an essential difference in the photomodification mechanisms between polydisperse and monodisperse nanostructures. © 2013 Springer-Verlag Berlin Heidelberg.

Scopus,
WOS

Держатели документа:
L.V. Kirenski Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Institute of Computational Modeling, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660028, Russian Federation
ИФ СО РАН
ИВМ СО РАН

Доп.точки доступа:
Ershov, A.E.; Gavrilyuk, A.P.; Гаврилюк, Анатолий Петрович; Karpov, S.V.; Semina, P.N.

    Dissipation of Alfven wave pulses propagating along dipole magnetic tubes with reflections at the ionosphere
[Text] / N. V. Erkaev [et al.] ; ed. H. K. Biernat // BOUNDARY LAYERS, WAVES AND NON-LINEAR DYNAMICAL PROCESSES. Ser. ADVANCES IN SPACE RESEARCH : ELSEVIER SCIENCE LTD, 2006. - Vol. 37: 35th COSPAR Scientific Assembly (JUL 18-25, 2004, Paris, FRANCE), Is. 3. - P576-580, DOI 10.1016/j.asr.2005.09.002. - Cited References: 7 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: A ratio of the maximal and minimal cross sections of the magnetic tube (contraction ratio) is a crucial parameter which affects very strongly on reflections of MHD wave pulses propagating along a narrowing magnetic flux tube. In cases of large contraction ratios of magnetospheric magnetic tubes, the wave energy flux at the ionospheric boundary can be rather small. Therefore the dissipation of the wave perturbations can be very weak for each reflection, in spite of a finite conductivity of the planet's ionosphere. The dissipation is stronger for the pulses with shorter wave scales. Because of that, Alfven wave pulses with sufficiently long wave scales have a very small energy loss for each reflection at the conducting ionosphere, and thus, they have many reflections without a noticeable decrease of their amplitude. This effect related to converging magnetic lines is dependent very strongly on the polarization of the Alfven wave. In case of a dipole magnetic field, the effect is most pronounced for wave pulses characterized by velocity and magnetic perturbations in the meridional plane. (C) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Shaidurov, V.A.; Semenov, V.S.; Biernat, H.K.; Heidorn, D.; Biernat, H.K. \ed.\

    Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles
[Text] / A. E. Ershov [et al.] // Appl. Phys. B-Lasers Opt. - 2014. - Vol. 115, Is. 4. - P. 547-560, DOI 10.1007/s00340-013-5636-6. - Cited References: 48. - Authors are thankful to Prof. V. A. Markel (University of Pennsylvania) for supplying program codes for realization of the coupled dipole method for polydisperse metal nanoparticle aggregates. This research was supported by the Russian Academy of Sciences under the Grants 24.29, 24.31, III.9.5, 43, SB RAS-SFU (101); Ministry of Education and Science of Russian Federation under Contract 14.B37.21.0457. . - ISSN 0946-2171. - ISSN 1432-0649
РУБ Optics + Physics, Applied

Аннотация: We propose an optodynamical model of interaction of pulsed laser radiation with aggregates of spherical metallic nanoparticles embedded into host media. The model takes into account polydispersity of particles, pair interactions between the particles, dissipation of absorbed energy, heating and melting of the metallic core of particles and of their polymer adsorption layers, and heat exchange between electron and ion components of the particle material as well as heat exchange with the interparticle medium. Temperature dependence of the electron relaxation constant of the particle material and the effect of this dependence on interaction of nanoparticles with laser radiation are first taken into consideration. We study in detail light-induced processes in the simplest resonant domains of multiparticle aggregates consisting of two particles of an arbitrary size in aqueous medium. Optical interparticle forces are realized due to the light-induced dipole interaction. The dipole moment of each particle is calculated by the coupled dipole method (with correction for the effect of higher multipoles). We determined the role of various interrelated factors leading to photomodification of resonant domains and found an essential difference in the photomodification mechanisms between polydisperse and monodisperse nanostructures.

WOS,
Scopus

Держатели документа:
[Ershov, A. E.
Karpov, S. V.
Semina, P. N.] Russian Acad Sci, LV Kirenski Inst Phys, Krasnoyarsk 660036, Russia
[Gavrilyuk, A. P.] Russian Acad Sci, Inst Computat Modeling, Krasnoyarsk 660036, Russia
[Gavrilyuk, A. P.
Karpov, S. V.] Siberian Fed Univ, Krasnoyarsk 660028, Russia
ИФ СО РАН
ИВМ СО РАН

Доп.точки доступа:
Ershov, A.E.; Gavrilyuk, A.P.; Гаврилюк, Анатолий Петрович; Karpov, S.V.; Semina, P.N.; Russian Academy of Sciences [24.29, 24.31, III.9.5, 43, SB RAS-SFU (101)]; Ministry of Education and Science of Russian Federation [14.B37.21.0457]

    Flapping oscillations of the bent current sheet
/ D. Kubyshkina [et al.] // Adv. Space Res. - 2015. - Vol. 56, Is. 8. - P1699-1706, DOI 10.1016/j.asr.2015.07.023 . - ISSN 0273-1177
Аннотация: We study the dependence of the flapping oscillations on the magnetotail current sheet bending, which is caused by the dipole tilt. Observations show that flapping waves propagate from the center of the current sheet to its flanks with a velocity one order of magnitude less than typical Alfven speed. For our analysis we use the double gradient model (Erkaev et al., 2009) of the flapping oscillations, which predicts a small minimum of the total pressure (gas plus magnetic) across the current layer. It is the depth of the potential well in the total pressure which defines the period and the speed of the flapping waves. Using the extension of the Kan/Manankova equilibriums for the non-zero dipole tilt we investigate the depth of the potential well with respect to the current sheet bending rate. We show that with the growth of the dipole tilt angle the depth of the potential well becomes smaller, the period of the flapping oscillations increases, and oscillations become nonlinear. There exists the critical tilt angle, where the potential well disappears and flapping regime changes from oscillations to instability. © 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus,
WOS

Держатели документа:
Saint Petersburg State University, Saint-Petersburg, Russian Federation
Institute of Computational Modelling SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation; Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kubyshkina, D.; Semenov, V.; Erkaev, N.V.; Еркаев, Николай Васильевич; Kubyshkin, I.

    An efficient water model for large scale molecular dynamics simulations
/ V. E. Zalizniak // J. Sib. Fed. Univ. Math. Phys. - 2015. - Vol. 8, Is. 4. - P487-496, DOI 10.17516/1997-1397-2015-8-4-487-496 . - ISSN 1997-1397

Кл.слова (ненормированные):
Molecular dynamics simulation -- Water model

Аннотация: The development of simple and efficient model that correctly represent the important features of water is essential to overcome the limitations in time scale and system size currently encountered in atomistic molecular dynamics simulations. The proposed one site model includes Lennard-Jones interaction and the angular averaged dipole-dipole interaction. Experimental data of liquid water at various temperatures are used for parametrization of the model. The values of density were chosen as primary target properties. These properties cover a temperature range from 300 to 350 K and pressures up to 10.1 MPa. The model properties are compared with those obtained from experiment and from general purpose TIP4P/2005 model. The comparison shows that all chosen properties are quite well reproduced by the proposed model. Computational scheme that is used in simulations is also presented. The proposed water model repro- duces the key characteristics of liquid water while being computationally considerably more efficient than standard multi-site atomistic water models. The model is for use on large scale simulations of the fluid behavior in nanosized structures. © Siberian Federal University. All rights reserved.

Scopus

Держатели документа:
Institute of Mathematics and Computer Science, Siberian Federal University, Svobodny, 79, Krasnoyarsk, Russian Federation
Institute of Computational Modelling SB RAS, Akademgorodok, 50/44, Krasnoyarsk, Russian Federation
577.29
Ф 94

    Функционализированные аптамерами магнитные нанодиски для нанохирургии опухолей
[Текст] : статья / С. С. Замай [и др.] // Сибирское медицинское обозрение. - 2015. - № 6. - С. 48-54 . - ISSN 1819-9496
   Перевод заглавия: Functionalized by the aptamers magnetic nanodiscs for nanosurgery of the tumors
УДК

Аннотация: Цель исследования. Определение перспектив использования функционализированных ДНК-аптамерами магнитных никелевых нанодисков с золотым покрытием для адресной клеточной хирургии онкологических заболеваний. Матери алы и методы. В качестве модели опухоли была использована асцитная карцинома Эрлиха. Теоретически и экспериментально исследованы структуры магнитного поля пермаллоевых и кобальтовых дисков Au-Fe(20)Ni(80)-Au и Au-Co-Au. Результаты. Выполнены оценки механического воздействия нанодисков на клеточную мембрану в переменном магнитном поле. Определены оптимальные состав, геометрия и структура остаточной намагниченности нанодисков. Экспериментально in vitro и in vivo для асцитной карциномы Эрлиха показана возможность использования функционализированных ДНК-аптамерами трехслойных Au-Ni-Au нанодисков с дипольной структурой остаточной намагниченности для адресного разрушения клеток-мишеней. 3аключе-ие. На основании теоретических расчетов и экспериментальных данных сделано заключение о том, что нанодиски Au-Ni-Au, обладающие магнитными свойствами, могут быть использованы для разработки новых методов и препаратов для малоинвазивной клеточной нанохирургии, которая позволяет адресно и дозировано уничтожать только клетки опухоли, в том числе, и метастазы.
The aim of the research. Determination of the prospects of application the functionalized by DNA-aptamers magnetic nickel nanodiscs with gold coating for targeted cell cancer surgery. Materials and methods. As tumor model was used Ehrlich ascites carcinoma. Theoretically and experimentally were investigated the structures of the magnetic field of permalloy and cobalt disks Au-Fe (20) Ni (80) -Au and Au-Co-Au. Results. It were executed the estimation of the mechanical impact of nanodiscs to the cell membrane in an alternating magnetic field. It was determined the optimum composition, geometry and structure of the residual magnetization of nanodiscs. Experimentally in vitro and in vivo for Ehrlich ascites carcinoma was showed the use of functionalized DNA-aptamers three layer Au-Ni-Au nanodisks with dipole structure of the residual magnetization for address destruction of the target cells. Conclusion. On the basis of theoretical calculations and experimental data, it was concluded that nanodiscs Au-Ni-Au, with magnetic properties, can be used to develop new methods and products for minimally invasive cellular nanosurgery that allows targeted and dosed destroy only tumor cells, including metastasis.

РИНЦ

Держатели документа:
ГАОУ ВПО Сибирский федеральный университет
ГБОУ ВПО Красноярский государственный медицинский университет имени проф. В. Ф. Войно-Ясенецкого Министерства здравоохранения РФ
ГБОУ ВПО Красноярский государственный педагогический университет им. В. П. Астафьева Министерства образования и науки РФ
Институт вычислительного моделирования СО РАН
Красноярский научный центр СО РАН

Доп.точки доступа:
Замай, Сергей Сергеевич; Zamay Sergey Sergeevich; Прокопенко, Владимир Семенович; Prokopenko Vladimir Semenovich; Замай, Анна Сергеевна; Zamay Anna Sergeevna; Денисенко, Валерий Васильевич; Denisenko V.V.; Ким, Петр Дементьевич; Kim Petr Dementievich; Орлов, Виталий Александрович; Orlov Vitaly Alerksandrovich; Замай, Галина Сергеевна; Zamay Galina Sergeevna; Иванченко, Татьяна Ивановна; Ivanchenko Tatiana Ivanovna; Замай, Татьяна Николаевна; Zamay Tatiana Nikolaevna

    The mathematical modeling of grouping the dipole water clusters
/ V. Shaidurov, V. Kornienko, A. Vyatkin ; ed.: A. . Ashyralyev, A. . Lukashov // INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM : AMER INST PHYSICS, 2016. - Vol. 1759: 3rd International Conference on Analysis and Applied Mathematics (ICAAM) (SEP 07-10, 2016, Almaty, KAZAKHSTAN). - Ст. 020004. - (AIP Conference Proceedings), DOI 10.1063/1.4959618. - Cited References:4 . -
РУБ Mathematics, Applied + Physics, Applied

Кл.слова (ненормированные):
Electric dipole -- Water clusters -- Physical-mathematical model -- Computational experiment -- Runge-Kutta methods

Аннотация: In the present paper, a physical-mathematical model and a computational algorithm implementing the model are proposed to study the behavior of particles having an electric dipole moment in an external electric field. Computational experiments demonstrate the orientation dynamics of water clusters with the increase of the generated field. The dipole properties of some water clusters were previously determined using Hyperchem program.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Inst Computat Modeling, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Shaidurov, V.V.; Шайдуров, Владимир Викторович; Kornienko, Viktoria; Vyatkin, Alexander; Ashyralyev, A... \ed.\; Lukashov, A... \ed.\

    Deep dark all-optical atom trap created by the combination of the cosine-Gauss light beams
[Text] / I. V. Krasnov // Laser Phys. - 2016. - Vol. 26, Is. 10. - Ст. 105501, DOI 10.1088/1054-660X/26/10/105501. - Cited References:30 . - ISSN 1054-660X. - ISSN 1555-6611
РУБ Optics + Physics, Applied
Рубрики:
DIPOLE FORCES
   RADIATION-PRESSURE

   LASER

   RECTIFICATION

Кл.слова (ненормированные):
rectified gradient force -- optical beams -- optical trap

Аннотация: We theoretically consider a novel type of the optical dark trap (ODT) for resonant atoms and ions. This trap is based on the rectified gradient forces acting on particles in the field of a combination of multiple bichromatic cosine-Gauss optical beams (CGBs). Such a bichromatic ODT can have a depth significantly exceeding the depth of the typical dark optical traps and is comparable with the depth of magneto-optical traps (similar to 1 K).

WOS,
Смотреть статью

Держатели документа:
Russian Acad Sci, Siberian Branch, KSC, Inst Computat Modelling, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Krasnov, I. V.
519.6
М 34

    Математическое моделирование движения полярной молекулы во внешнем электрическом поле
[Текст] : научное издание / В. В. Шайдуров, В. С. Корниенко // Решетневские чтения. - 2016. - Т. 2, № 20. - С. 150-152 . - ISSN 1990-7702
   Перевод заглавия: MATHEMATICAL MODELING OF POLAR MOLECULE MOTION IN AN ELECTRIC FIELD
УДК

Аннотация: Предложена физико-математическая модель для исследования поведения дипольной частицы во внешнем электрическом поле.
In this paper, we propose physical and mathematical model to research dipole behavior under electric external field.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Шайдуров, В.В.; Shadurov V.V.; Корниенко, В.С.; Kornienko V.S.

    Effective Molecular Dynamics Model of Ionic Solutions for Large-Scale Calculations
/ V. E. Zalizniak, O. A. Zolotov, I. I. Ryzhkov // J. Appl. Mech. Tech. Phys. - 2018. - Vol. 59, Is. 1. - P41-51, DOI 10.1134/S0021894418010066. - Cited References:32. - This work was supported by the Russian Science Foundation (Grant No. 15-19-10017). The calculations were performed at the Center of High-Performance Calculations of the Siberian Federal University. . - ISSN 0021-8944. - ISSN 1573-8620
РУБ Mechanics + Physics, Applied

Аннотация: A model of ionic solutions is proposed which can be used to calculate aqueous salt solutions in different nanostructures. The interaction potential of the model includes the Lennard-Jones potential and angularly averaged dipole-dipole and ion-dipole interactions. Lennard-Jones potential parameters for different ions are obtained. Characteristics of aqueous solutions at different salt concentrations are calculated using the molecular dynamics method. It is shown that the calculated values of the hydration shells of ions parameters are in good agreement with the theoretical and experimental data at a salt concentration of 1 mol/kg. The computational scheme used in the calculations is described. It is shown that calculations using the proposed model require less computing resources compared with the standard models of ionic solutions.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Siberian Fed Univ, Inst Math & Fundamental Informat, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Zalizniak, V. E.; Zolotov, O. A.; Ryzhkov, I. I.; Russian Science Foundation [15-19-10017]

    Titanium nitride nanoparticles as an alternative platform for plasmonic waveguides in the visible and telecommunication wavelength ranges
/ V. I. Zakomirnyi [et al.] // Photonics Nanostruc. Fundam. Appl. - 2018. - Vol. 30. - P50-56, DOI 10.1016/j.photonics.2018.04.005 . - ISSN 1569-4410
Аннотация: We propose to utilize titanium nitride (TiN) as an alternative material for linear periodic chains (LPCs) of nanoparticles (NPs) which support surface plasmon polariton (SPP) propagation. Dispersion and transmission properties of LPCs have been examined within the framework of the dipole approximation for NPs with various shapes: spheres, prolate and oblate spheroids. It is shown that LPCs of TiN NPs support high-Q eigenmodes for an SPP attenuation that is comparable with LPCs from conventional plasmonic materials such as Au or Ag, with the advantage that the refractory properties and cheap fabrication of TiN nanostructures are more preferable in practical implementations compared to Au and Ag. We show that the SPP decay in TiN LPCs remains almost the same even at extremely high temperatures which is impossible to reach with conventional plasmonic materials. Finally, we show that the bandwidth of TiN LPCs from non-spherical particles can be tuned from the visible to the telecommunication wavelength range by switching the SPP polarization, which is an attractive feature for integrating these structures into modern photonic devices. © 2018 Elsevier B.V.

Scopus,
Смотреть статью

Держатели документа:
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Zakomirnyi, V. I.; Rasskazov, I. L.; Gerasimov, V. S.; Ershov, A. E.; Polyutov, S. P.; Karpov, S. V.; Agren, H.

    On application of asymmetric Kan-like exact equilibria to the Earth magnetotail modeling
/ D. B. Korovinskiy [et al.] // Ann. Geophys. - 2018. - Vol. 36, Is. 2. - P641-653, DOI 10.5194/angeo-36-641-2018. - Cited References:45. - This study has been supported by the Austrian Science Fund (FWF), P 27012-N27 and I 3506-N27, and by Russian Science Foundation (RSF) grant no. 18-47-05001. The authors thank Anna V. Egorova for her help with preparation of the images, and reviewers for their help in improving the paper. . - ISSN 0992-7689. - ISSN 1432-0576
РУБ Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology &

Аннотация: A specific class of solutions of the Vlasov-Maxwell equations, developed by means of generalization of the well-known Harris-Fadeev-Kan-Manankova family of exact two-dimensional equilibria, is studied. The examined model reproduces the current sheet bending and shifting in the vertical plane, arising from the Earth dipole tilting and the solar wind nonradial propagation. The generalized model allows magnetic configurations with equatorial magnetic fields decreasing in a tailward direction as slow as 1/x, contrary to the original Kan model (1/x(3)); magnetic configurations with a single X point are also available. The analytical solution is compared with the empirical T96 model in terms of the magnetic flux tube volume. It is found that parameters of the analytical model may be adjusted to fit a wide range of averaged magnetotail configurations. The best agreement between analytical and empirical models is obtained for the midtail at distances beyond 10-15 R-E at high levels of magnetospheric activity. The essential model parameters (current sheet scale, current density) are compared to Cluster data of magnetotail crossings. The best match of parameters is found for single-peaked current sheets with medium values of number density, proton temperature and drift velocity.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Austrian Acad Sci, Space Res Inst, Graz, Austria.
St Petersburg State Univ, Earths Phys Dept, St Petersburg, Russia.
SBRAS, FRC Krasnoyarsk Sci Ctr, Inst Computat Modelling, Krasnoyarsk, Russia.
Siberian Fed Univ, Appl Mech Dept, Krasnoyarsk, Russia.

Доп.точки доступа:
Korovinskiy, Daniil B.; Kubyshkina, Darya I.; Semenov, Vladimir S.; Kubyshkina, Marina V.; Erkaev, Nikolai V.; Kiehas, Stefan A.; Korovinskiy, Daniil; Austrian Science Fund (FWF) [P 27012-N27, I 3506-N27]; Russian Science Foundation (RSF) [18-47-05001]

    Current sheet bending as destabilizing factor in magnetotail dynamics
/ D. B. Korovinskiy [et al.] // Phys. Plasmas. - 2018. - Vol. 25, Is. 9, DOI 10.1063/1.5046175 . - ISSN 1070-664X
Аннотация: The problem of the magnetohydrodynamical stability of bent magnetotail current sheets is considered by means of 2.5-dimensional numerical simulations. This study is focused on the cross-tail transversal mode, modeling the magnetotail flapping motions, at the background of the Kan-like magnetoplasma equilibrium. It is found that in symmetrical current sheets, both stable and unstable branches of the solution may coexist; the growth rate of the unstable mode is rather small, so that the sheet may be considered as stable at the substorm timescale. With the increasing dipole tilt angle, the sheet bends and the growth rate rises. For sufficiently large tilt angles, the stable branch of the solution disappears. Thereby, the sheet destabilization timescale shortens for an order of magnitude, down to several minutes. The analysis of the background parameters has shown that stability loss is not related to buoyancy; it is controlled by the cross-sheet distribution of the total pressure. © 2018 Author(s).

Scopus,
Смотреть статью

Держатели документа:
Space Research Institute, Austrian Academy of Sciences, Graz, 8042, Austria
Earth Physics Department, Saint Petersburg State University, Petrodvoretz, 198504, Russian Federation
Institute of Computational Modelling, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Applied Mechanics Department, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Theoretical Physics Division, Petersburg Nuclear Physics Institute, Gatchina, 188300, Russian Federation

Доп.точки доступа:
Korovinskiy, D. B.; Semenov, V. S.; Erkaev, N. V.; Ivanov, I. B.; Kiehas, S. A.

    Brownian dynamics of the self-assembly of complex nanostructures in the field of quasi-resonant laser radiation
/ V. S. Kornienko [et al.] // Photonics Nanostruc. Fundam. Appl. - 2019. - Vol. 35. - Ст. 100707, DOI 10.1016/j.photonics.2019.100707 . - ISSN 1569-4410
Аннотация: Self-assembly of nanoparticles under the action of laser field can be an universal method for the formation of nanostructures with specific properties for application in sensorics and nanophotonics. For prognosis of the self-assembly processes, the model of movement of an ensemble of nanoparticles in a viscous media under the action of laser radiation with the account for interaction of laser-induced polarizations and Brownian dynamics is developed. This model is applied to the investigation of the self-assembly process of a triple of nanoparticles into three-particle structure with a predetermined geometry.Two specific cases of formation of nanostructure from a preliminarily formed pair of particles are studied: either for the pair fixed in space or from the unfixed pair of nanoparticles. The geometry of resulting nanostructures is shown to be determined by the polarization direction of laser radiation and the laser wavelength. Under proper choice of these parameters the formation of structures is shown to be highly efficient. E. g., maximum probability of structures formation is as hig as 36–46% per single laser pulse of 10 ns duration. © 2019 Elsevier B.V.

Scopus,
Смотреть статью,
WOS,
РИНЦ

Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Department of Computational Mathematics, Institute of Computational Modeling of Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
Laboratory of Coherent Optics, Kirensky Institute of Physics Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kornienko, V. S.; Tsipotan, A. S.; Aleksandrovsky, A. S.; Slabko, V. V.

    Collective lattice resonances in arrays of dielectric nanoparticles: a matter of size
/ V. I. Zakomirnyi [et al.] // Opt. Lett. - 2019. - Vol. 44, Is. 23. - P5743-5746, DOI 10.1364/OL.44.005743. - Cited References:66. - Russian Science Foundation (19-72-00066). . - ISSN 0146-9592. - ISSN 1539-4794
РУБ Optics

Аннотация: Collective lattice resonances (CLRs) in finite-sized 2D arrays of dielectric nanospheres have been studied via the coupled dipole approximation. We show that even for sufficiently large arrays, up to 100 x 100 nanoparticles (NPs), electric or magnetic dipole CLRs may differ significantly from the ones calculated for infinite arrays with the same NP sizes and interparticle distances. The discrepancy is explained by the existence of a sufficiently strong cross-interaction between electric and magnetic dipoles induced at NPs in finite-sized lattices, which is ignored for infinite arrays. We support this claim numerically and propose an analytic model to estimate a spectral width of CLRs for finite-sized arrays. Given that most of the current theoretical and numerical researches on collective effects in arrays of dielectric NPs rely on modeling infinite structures, the reported findings may contribute to thoughtful and optimal design of inherently finite-sized photonic devices. (C) 2019 Optical Society of America

WOS,
Смотреть статью,
Scopus

Держатели документа:
Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Theoret Chem & Biol, SE-10691 Stockholm, Sweden.
FMBA Russia, Fed Siberian Res Clin Ctr, Krasnoyarsk 660037, Russia.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia.
Inst Computat Modeling SB RAS, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Siberian State Univ Sci & Technol, Krasnoyarsk 660014, Russia.
Univ Rochester, Inst Opt, Rochester, NY 14627 USA.

Доп.точки доступа:
Zakomirnyi, V., I; Ershov, A. E.; Gerasimov, V. S.; Karpov, S., V; Agren, H.; Rasskazov, I. L.; Rasskazov, Ilia L.; Russian Science FoundationRussian Science Foundation (RSF) [19-72-00066]

    Magnetic field effect on recombination of radicals diffusing on a two-dimensional plane
/ N. N. Lukzen, K. L. Ivanov, V. M. Sadovsky, R. Z. Sagdeev // J Chem Phys. - 2020. - Vol. 152, Is. 3. - Ст. 034103, DOI 10.1063/1.5131583 . - ISSN 0021-9606
Аннотация: Magnetic Field Effects (MFEs) on the recombination of radicals, which diffuse on an infinite plane, are studied theoretically. The case of spin-selective diffusion-controlled recombination of Radical Pairs (RPs) starting from a random spin state is considered assuming uniform initial distribution of the radicals. In this situation, reaction kinetics is described by a time-dependent rate coefficient K(t), which tends to zero at long times. Strong MFEs on K(t) are predicted that originate from the ?g and hyperfine driven singlet-triplet mixing in the RP. The effects of spin relaxation on the magnetic field are studied, as well as the influence of the dipole-dipole interaction between the electron spins of the RP. In the two-dimensional case, this interaction is not averaged out by diffusion and it strongly affects the MFE. The results of this work are of importance for interpreting MFEs on lipid peroxidation, a magnetosensitive process occurring on two-dimensional surfaces of cell membranes. © 2020 Author(s).

Scopus

Держатели документа:
International Tomography Center, Siberian Branch, Russian Academy of Sciences, Institutskaya Str. 3a, Novosibirsk, 630090, Russian Federation
Novosibirsk State University, Pirogova Str. 1, Novosibirsk, 630090, Russian Federation
Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/44, Krasnoyarsk, 660036, Russian Federation
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, Leninskii Prospect 31, Moscow, 19991, Russian Federation

Доп.точки доступа:
Lukzen, N. N.; Ivanov, K. L.; Sadovsky, V. M.; Sagdeev, R. Z.