Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 26

    SOLUTION OF TWO-DIMENSIONAL PROBLEMS OF PLASTIC-DEFORMATION OF PLATES AND MEMBRANE SHELLS
[Text] / Y. V. NEMIROVSKII, S. B. MAKSIMOV // SOVIET APPLIED MECHANICS. - 1987. - Vol. 23, Is. 3. - P260-268, DOI 10.1007/BF00886603. - Cited References: 9 . - ISSN 0038-5298
РУБ Mechanics


WOS

Держатели документа:
ACAD SCI USSR,CTR COMP,KRASNOYARSK,USSR
ИВМ СО РАН
Доп.точки доступа:
NEMIROVSKII, Y.V.; MAKSIMOV, S.B.

    Effects of the interaction between an optical membrane and plasma
/ A. P. Gavrilyuk // Russian Physics Journal. - 1998. - Vol. 41, Is. 6. - P511-516 . - ISSN 1064-8887

Аннотация: A model is considered for the interaction with plasma of an "optical membrane " formed by bichromatic intersecting laser beams. This model is used to describe a number of effects resulting from the mechanical action of light on resonant ions in the plasma. В© 1999 Kluwer Academic/Plenum Publishers.

Scopus

Держатели документа:
Krasnoyarsk Computing Center, Siberian Branch of the Russian Academy of Sciences, Russian Federation
ИВМ СО РАН

Доп.точки доступа:
Gavrilyuk, A.P.; Гаврилюк, Анатолий Петрович

    Structures based on graphitized nanotubulenes with a common electrode in a matrix of porous anodic alumina for the purpose of forming electrically switchable membranes
[Text] / M. M. Simunin [et al.] // Tech. Phys. Lett. - 2015. - Vol. 41, Is. 11. - P1047-1050, DOI 10.1134/S1063785015110103. - Cited References:20. - This work was supported financially by the Russian Science Foundation, project no. 15-19-10017. . - ISSN 1063-7850. - ISSN 1090-6533
РУБ Physics, Applied

Аннотация: A structure based on porous anodic alumina with through pores is synthesized. This structure may be of some interest in terms of fabricating electrically switchable membranes. Conducting tubulenes connected to a common input electrode are located in the pores of the structure. It is hypothesized that enhancement of the electric field nonuniformity associated with the indicated structure morphology should help raise the degree of ionic selectivity of the membrane and broaden the range of permissible concentrations of ions in the processed solution. An suggestion regarding the structure of synthesized tubulenes in the context of the problem of suppressing the physical sorption of ions on the pore surface and raising the hydrogen and oxygen reduction potentials relative to those of state-of-the-art field-switchable membranes is also made.

WOS,
Scopus

Держатели документа:
Natl Res Univ Elect Technol MIET, Moscow 124498, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Simunin, M. M.; Khartov, S. V.; Shiverskii, A. V.; Zyryanov, V. Ya.; Fadeev, Y. V.; Фадеев Ю.В.; Voronin, A. S.; Russian Science Foundation [15-19-10017]
577.29
Ф 94

    Функционализированные аптамерами магнитные нанодиски для нанохирургии опухолей
[Текст] : статья / С. С. Замай [и др.] // Сибирское медицинское обозрение. - 2015. - № 6. - С. 48-54 . - ISSN 1819-9496
   Перевод заглавия: Functionalized by the aptamers magnetic nanodiscs for nanosurgery of the tumors
УДК

Аннотация: Цель исследования. Определение перспектив использования функционализированных ДНК-аптамерами магнитных никелевых нанодисков с золотым покрытием для адресной клеточной хирургии онкологических заболеваний. Матери алы и методы. В качестве модели опухоли была использована асцитная карцинома Эрлиха. Теоретически и экспериментально исследованы структуры магнитного поля пермаллоевых и кобальтовых дисков Au-Fe(20)Ni(80)-Au и Au-Co-Au. Результаты. Выполнены оценки механического воздействия нанодисков на клеточную мембрану в переменном магнитном поле. Определены оптимальные состав, геометрия и структура остаточной намагниченности нанодисков. Экспериментально in vitro и in vivo для асцитной карциномы Эрлиха показана возможность использования функционализированных ДНК-аптамерами трехслойных Au-Ni-Au нанодисков с дипольной структурой остаточной намагниченности для адресного разрушения клеток-мишеней. 3аключе-ие. На основании теоретических расчетов и экспериментальных данных сделано заключение о том, что нанодиски Au-Ni-Au, обладающие магнитными свойствами, могут быть использованы для разработки новых методов и препаратов для малоинвазивной клеточной нанохирургии, которая позволяет адресно и дозировано уничтожать только клетки опухоли, в том числе, и метастазы.
The aim of the research. Determination of the prospects of application the functionalized by DNA-aptamers magnetic nickel nanodiscs with gold coating for targeted cell cancer surgery. Materials and methods. As tumor model was used Ehrlich ascites carcinoma. Theoretically and experimentally were investigated the structures of the magnetic field of permalloy and cobalt disks Au-Fe (20) Ni (80) -Au and Au-Co-Au. Results. It were executed the estimation of the mechanical impact of nanodiscs to the cell membrane in an alternating magnetic field. It was determined the optimum composition, geometry and structure of the residual magnetization of nanodiscs. Experimentally in vitro and in vivo for Ehrlich ascites carcinoma was showed the use of functionalized DNA-aptamers three layer Au-Ni-Au nanodisks with dipole structure of the residual magnetization for address destruction of the target cells. Conclusion. On the basis of theoretical calculations and experimental data, it was concluded that nanodiscs Au-Ni-Au, with magnetic properties, can be used to develop new methods and products for minimally invasive cellular nanosurgery that allows targeted and dosed destroy only tumor cells, including metastasis.

РИНЦ

Держатели документа:
ГАОУ ВПО Сибирский федеральный университет
ГБОУ ВПО Красноярский государственный медицинский университет имени проф. В. Ф. Войно-Ясенецкого Министерства здравоохранения РФ
ГБОУ ВПО Красноярский государственный педагогический университет им. В. П. Астафьева Министерства образования и науки РФ
Институт вычислительного моделирования СО РАН
Красноярский научный центр СО РАН

Доп.точки доступа:
Замай, Сергей Сергеевич; Zamay Sergey Sergeevich; Прокопенко, Владимир Семенович; Prokopenko Vladimir Semenovich; Замай, Анна Сергеевна; Zamay Anna Sergeevna; Денисенко, Валерий Васильевич; Denisenko V.V.; Ким, Петр Дементьевич; Kim Petr Dementievich; Орлов, Виталий Александрович; Orlov Vitaly Alerksandrovich; Замай, Галина Сергеевна; Zamay Galina Sergeevna; Иванченко, Татьяна Ивановна; Ivanchenko Tatiana Ivanovna; Замай, Татьяна Николаевна; Zamay Tatiana Nikolaevna

    Optimization of photothermal methods for laser hyperthermia of malignant cells using bioconjugates of gold nanoparticles
/ V. S. Gerasimov [et al.] // Colloid J. - 2016. - Vol. 78, Is. 4. - P435-442, DOI 10.1134/S1061933X16040050 . - ISSN 1061-933X
Аннотация: Selective action of laser radiation on membranes of malignant cells has been studied in different regimes using conjugates of gold nanoparticles with oligonucleotides by the example of DNA aptamers. Under the conditions of a contact between a bioconjugate and a cell surface and the development of substantial and rapidly relaxing temperature gradients near a nanoparticle, the membranes of malignant cells alone are efficiently damaged due to the local hyperthermia of a cellular membrane. It has been shown that employment of pulsed instead of continuous wave laser radiation provides the localization of the damaging action, which does not involve healthy cells. © 2016, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Siberian Federal University, Svobodnyi pr. 79, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/44, Krasnoyarsk, Russian Federation
Kirenskii Institute of Physics, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/38, Krasnoyarsk, Russian Federation
Reshetnev State Siberian State Aerospace University, pr. Gazety “Krasnoyarskii rabochii” 31, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Gerasimov, V. S.; Ershov, A. E.; Karpov, S. V.; Polyutov, S. P.; Semina, P. N.

    Theoretical study of electrolyte transport in nanofiltration membranes with constant surface potential/charge density
/ I. I. Ryzhkov, A. V. Minakov // J. Membr. Sci. - 2016. - Vol. 520. - P515-628, DOI 10.1016/j.memsci.2016.08.004 . - ISSN 0376-7388
Аннотация: The pressure–driven electrolyte transport through nanofiltration membrane pores with constant surface potential or charge density is investigated theoretically. Two approaches are employed in the study. The first one is based on one–dimensional Nernst–Planck equation coupled with electroneutrality, zero current, and Donnan equilibrium conditions. This model is extended to account for interfacial effects by using a smooth approximation of step function for the volume charge density. The second approach is based on two–dimensional Nernst–Planck, Poisson, and Navier–Stokes equations, which are solved in a high aspect ratio nanopore connecting two reservoirs with much larger diameter. The modification of equations on the basis of Slotboom transformation is employed to speed up the convergence rate. The distributions of potential, pressure, ion concentrations and fluxes due to convection, diffusion, and migration in the nanopore and reservoirs are discussed and analyzed. It is found that for constant surface charge density, the convective flux of counter–ions in the nanopore is almost completely balanced by the opposite migration flux, while for constant surface potential, the convective flux is balanced by the opposite diffusion and migration fluxes. The co–ions in the nanopore are mainly transported by diffusion. A particular attention is focused on describing the interfacial effects at the nanopore entrance/exit. Detailed comparison between one– and two–dimensional models is performed in terms of rejection, pressure drop, and membrane potential dependence on the surface potential/charge density, volume flux, ion concentration, and pore radius. A good agreement between these models is found when the Debye length is smaller than the pore radius and the surface potential or charge density are sufficiently low. © 2016 Elsevier B.V.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Computational Modelling SB RAS, Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodny 79, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Minakov, A. V.; Рыжков, Илья Игоревич

    Mathematical modeling of the impact produced by magnetic disks on living cells
/ V. V. Denisenko, V. M. Sadovskii, S. S. Zamay // J. Sib. Fed. Univ. Math. Phys. - 2016. - Vol. 9, Is. 4. - P432-442, DOI 10.17516/1997-1397-2016-9-4-432-442 . - ISSN 1997-1397

Кл.слова (ненормированные):
Elastic membrane -- Elliptic boundary value problem -- Living cell -- Magnetic polarizability

Аннотация: An analytical solution of the problem on elastic deformation of a membrane allows analyzing deformation of typical living cells under the influence of magnetic disks attached to the cells. Based on the numerical solution of two-dimensional elliptic boundary value problems, the magnetic polarizabilities of the disks are obtained as the functions of magnetic permeability of the disk substance. It is shown that typical thin disks made of iron, nickel and cobalt in the mode far from saturation are magnetized substantially the same as a disk with infinite magnetic permeability. Though the solved problems are stationary, the results are also usable in the analysis of quasi-stationary processes such as low-frequency variation of external magnetic field. © Siberian Federal University. All rights reserved.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Computational Modeling SB RAS, Akademgorodok, 50/44, Krasnoyarsk, Russian Federation
Institute of Mathematics and Computer Science, Siberian Federal University, Svobodny, 79, Krasnoyarsk, Russian Federation
Krasnoyarsk Scientific Center SB RAS, Akademgorodok, 50, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Denisenko, V. V.; Sadovskii, V. M.; Zamay, S. S.
517.95+537.63+57.04
M39

    Mathematical Modeling of the Impact Produced by Magnetic Disks on Living Cells
: статья / Valery V. Denisenko, Vladimir M. Sadovskii, Sergey S. Zamay // Журнал Сибирского федерального университета. Серия: Математика и физика. - 2016. - Т. 9, № 4. - P432-442, DOI 10.17516/1997-1397-2016-9-4-432-442 . - ISSN 1997-1397
   Перевод заглавия: Математическое моделирование воздействия магнитных дисков на живые клетки
УДК

Аннотация: An analytical solutionoftheproblemon elastic deformationofa membraneallows analyzing deformation of typical living cells under the in?uence of magnetic disks attached to the cells. Based on the numerical solution of two-dimensional ellipticboundary value problems, the magneticpolarizabilities of the disks are obtained as the functions of magneticpermeability of the disk substance. It is shown that typical thin disks made of iron, nickel and cobalt in the mode far from saturation are magnetized substantially the sameasadiskwith in?nite magneticpermeability. Thoughthe solvedproblemsare stationary,theresults are also usable in the analysis of quasi-stationary processes such as low-frequency variation of external magnetic ?eld.
Построено аналитическое решение задачи о деформации упругой мембраны, которое позволяет анализировать деформации типичных живых клеток под воздействием прикрепленных к клеткам магнитных дисков. На основе численного решения двумерных эллиптических краевых задач получены зависимости магнитных поляризуемостей дисков от магнитной поницаемости их вещества. Показано, что типичные тонкие диски, изготовленные из железа, никеля, кобальта, в режимах, далеких от насыщения, намагничиваются практически так же, как при бесконечной магнитной проницаемости. В работе решены стационарные задачи, однако полученные результаты могут быть использованы и при анализе квазистационарных процессов, происходящих, например, при изменении внешнего магнитного поля с небольшой частотой.

РИНЦ,
WOS,
Смотреть статью

Держатели документа:
Institute of Computational Modeling SB RAS
Institute of Mathematics and Computer Science SiberianFederal University Svobodny
Krasnoyarsk Scienti?c Center SB RAS

Доп.точки доступа:
Sadovskii, V.M.; Садовский, Владимир Михайлович; Zamay, Sergey S.; Замай Сергей С.; Денисенко, Валерий Васильевич

    Noninvasive Microsurgery Using Aptamer-Functionalized Magnetic Microdisks for Tumor Cell Eradication
/ T. N. Zamay [et al.] // Nucleic Acid Therape. - 2017. - Vol. 27, Is. 2. - P105-114, DOI 10.1089/nat.2016.0634 . - ISSN 2159-3337

Кл.слова (ненормированные):
aptamer -- magnetic microdisks -- magnetodynamic therapy -- tumor eradication

Аннотация: Magnetomechanical cell disruption using nano- and microsized structures is a promising biomedical technology used for noninvasive elimination of diseased cells. It applies alternating magnetic field (AMF) for ferromagnetic microdisks making them oscillate and causing cell membrane disruption with cell death followed by apoptosis. In this study, we functionalized the magnetic microdisks with cell-binding DNA aptamers and guided the microdisks to recognize cancerous cells in a mouse tumor in vivo. Only 10 min of the treatment with a 100 Hz AMF was enough to eliminate cancer cells from a malignant tumor. Our results demonstrate a good perspective of using aptamer-modified magnetic microdisks for noninvasive microsurgery for tumors. © Mary Ann Liebert, Inc. 2017.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University, 1, P. Zheleznyaka, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Krasnoyarsk State Pedagogical University, Krasnoyarsk, Russian Federation
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada

Доп.точки доступа:
Zamay, T. N.; Zamay, G. S.; Belyanina, I. V.; Zamay, S. S.; Denisenko, V.V.; Денисенко, Валерий Васильевич; Kolovskaya, O. S.; Ivanchenko, T. I.; Grigorieva, V. L.; Garanzha, I. V.; Veprintsev, D. V.; Glazyrin, Y. E.; Shabanov, A. V.; Prinz, V. Y.; Seleznev, V. A.; Sokolov, A. E.; Prokopenko, V. S.; Kim, P. D.; Gargaun, A.; Berezovski, M. V.; Zamay, A. S.

    Preparation and ionic selectivity of carbon-coated alumina nanofiber membranes
/ D. V. Lebedev [et al.] // Pet. Chem. - 2017. - Vol. 57, Is. 4. - P306-317, DOI 10.1134/S096554411704003X. - Cited References:52. - This work was supported by the Russian Science Foundation, grant no. 15-19-10017. Instrumental analysis of the materials was performed in the Shared Equipment Center at the Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy Sciences. . - ISSN 0965-5441. - ISSN 1555-6239
РУБ Chemistry, Organic + Chemistry, Physical + Energy & Fuels + Engineering,

Аннотация: A novel type of ion-selective membranes based on Nafen(TM) alumina nanofibers coated with carbon is proposed. The membranes are produced by filtration of a Nafen nanofiber suspension through a porous support followed by drying and sintering. A thin carbon layer (up to 2 nm) is deposited on the nanofibers by chemical vapor deposition (CVD). Its formation is confirmed by the results of Raman spectroscopy and visually observed in TEM images. According to low temperature nitrogen adsorption experiments, the formation of carbon layer leads to decreasing pore size (the maximum of pore size distribution shifts from 28 to 16 nm) and the corresponding decrease of porosity (from 75 to 62%) and specific surface area (from 146 to 107 m(2)g(-1)). The measurement of membrane potential in an electrochemical cell has shown that the deposition of carbon on the membrane results in high ionic selectivity. In an aqueous KCl solution, the membranes display high anion selectivity with anion and cation transference numbers of 0.94 and 0.06, respectively. The fixed-charge density of membrane has been determined by fitting the experimental data using the Teorell-Meyer-Sievers model. It has been found that the membrane fixed-charge density increases with increasing electrolyte concentration. Possible applications of the membranes produced include nanofiltration, ultrafiltration, and separation of charged species in mixtures. The formation of a conductive carbon layer on the pore surface can be employed for fabricating membranes with switchable ion-transport selectivity.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk, Russia.
Russian Acad Sci, Siberian Branch, Mol Elect Dept, Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia.
Natl Res Univ Elect Technology MIET, Moscow, Russia.
Russian Acad Sci, Siberian Branch, Inst Chem & Chem Technol, Krasnoyarsk, Russia.

Доп.точки доступа:
Lebedev, D.V.; Лебедев Д.В.; Shiverskiy, A. V.; Simunin, M. M.; Solodovnichenko, V.S.; Солодовниченко В.С.; Parfenov, V. A.; Bykanova, V. V.; Khartov, S. V.; Ryzhkov, I.I.; Рыжков, Илья Игоревич; Russian Science Foundation [15-19-10017]

    Finite ion size effects on electrolyte transport in nanofiltration membranes
/ I. I. Ryzhkov, A. V. Minakov // J. Sib. Fed. Univ. Math. Phys. - 2017. - Vol. 10, Is. 2. - P186-198, DOI 10.17516/1997-1397-2017-10-2-186-198 . - ISSN 1997-1397
Аннотация: The pressure–driven electrolyte transport through nanofiltration membrane pores with specified wall potential is investigated theoretically. The finite ion size effect is taken into account by introducing an additional term to electrochemical potential. The two–dimensional Navier–Stokes, Poisson, and modified Nernst–Planck equations are solved numerically in a high aspect ratio nanopore connecting two reservoirs with a larger diameter. The calculations are performed for potassium chloride aqueous solution. In the case of point–like ions, the non–physical rise of counter–ion concentration is observed near the pore wall at large applied voltages. When finite ion size is taken in account, the concentration of counter–ions decreases significantly and saturates to the maximum value. It leads to lower osmotic pressure jump and larger magnitude of potential in the pore. The stronger co–ion depletion observed for finite size ions results in the increase of salt rejection, membrane potential, and required pressure drop. © Siberian Federal University. All rights reserved.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Computational Modelling RAS SB, Academgorodok, 50/44, Krasnoyarsk, Russian Federation
Institute of Engineering Physics and Radio Electronics, Siberian Federal University, Svobodny, 79, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ryzhkov, I. I.; Minakov, A. V.

    In Vivo Cancer Cells Elimination Guided by Aptamer-Functionalized Gold-Coated Magnetic Nanoparticles and Controlled with Low Frequency Alternating Magnetic Field
/ I. V. Belyanina [et al.] // Theranostics. - 2017. - Vol. 7, Is. 13. - P3326-3337, DOI 10.7150/thno.17089. - Cited References:35. - The authors are grateful to George Y. Vorogeikin, Yuri I. Vorogeikin and "OKB ART". Andrey Barinov and "OPTEC Group" for help with 3D laser scanning imaging. Microscopic analyses using Carl Zeiss LSM 800 were done in the "Center for bioassay, nanotechnology and nanomaterials safety" ("Biotest-Nano") (Multiple-Access Center, Tomsk State University, Tomsk, Russia). Toxicity studies have been performed in Multiple-Access Center, Central Scientific Research Laboratory in Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenecky. This work was supported by the Russian Scientific Fund (grant #14-15-00805). . - ISSN 1838-7640
РУБ Medicine, Research & Experimental

Аннотация: Biomedical applications of magnetic nanoparticles under the influence of a magnetic field have been proved useful beyond expectations in cancer therapy. Magnetic nanoparticles are effective heat mediators, drug nanocarriers, and contrast agents; various strategies have been suggested to selectively target tumor cancer cells. Our study presents magnetodynamic nanotherapy using DNA aptamer-functionalized 50 nm gold-coated magnetic nanoparticles exposed to a low frequency alternating magnetic field for selective elimination of tumor cells in vivo. The cell specific DNA aptamer AS-14 binds to the fibronectin protein in Ehrlich carcinoma hence helps deliver the gold-coated magnetic nanoparticles to the mouse tumor. Applying an alternating magnetic field of 50 Hz at the tumor site causes the nanoparticles to oscillate and pull the fibronectin proteins and integrins to the surface of the cell membrane. This results in apoptosis followed by necrosis of tumor cells without heating the tumor, adjacent healthy cells and tissues. The aptamer-guided nanoparticles and the low frequency alternating magnetic field demonstrates a unique non-invasive nanoscalpel technology for precise cancer surgery at the single cell level.

WOS,
Смотреть статью

Держатели документа:
Krasnoyarsk State Med Univ, Krasnoyarsk, Russia.
Russian Acad Sci, KSC Siberian Branch, Fed Res Ctr, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Univ Ottawa, Dept Chem & Biomol Sci, Ottawa, ON, Canada.
Inst Computat Modeling RAS SB, Krasnoyarsk, Russia.

Доп.точки доступа:
Belyanina, Irina V.; Zamay, Tatiana N.; Zamay, Galina S.; Zamay, Sergey S.; Kolovskaya, Olga S.; Ivanchenko, Tatiana I.; Denisenko, Valery V.; Kirichenko, Andrey K.; Glazyrin, Yury E.; Garanzha, Irina V.; Grigorieva, Valentina V.; Shabanov, Alexandr V.; Veprintsev, Dmitry V.; Sokolov, Alexey E.; Sadovskii, Vladimir M.; Gargaun, Ana; Berezovski, Maxim V.; Kichkailo, Anna S.; Russian Scientific Fund [14-15-00805]

    Синтез мембран на основе нановолокон оксида алюминия и исследование их ионной селективности
[Текст] : статья / Д. В. Лебедев [и др.] // Мембраны и мембранные технологии. - 2017. - Т. 7, № 2. - С. 86-98, DOI 10.1134/S2218117217020031 . - ISSN 2218-1172

Аннотация: Предложен новый тип керамических мембран с ионной селективностью на основе нановолокон оксида алюминия (NafenTM), покрытых слоем углерода. Синтез мембран осуществляется методом вакуумной фильтрации коллоидного раствора волокон Nafen с последующим термическим отжигом и нанесением углеродного слоя методом химического осаждения из газовой фазы (chemical vapor deposition, CVD). Данные просвечивающей электронной микроскопии и спектроскопии комбинационного рассеяния подтверждают формирование углеродного слоя толщиной до 2 нм на нановолокнах. По данным низкотемпературной адсорбции азота, это приводит к уменьшению размера пор (максимум функции распределения смещается от 28 к 16 нм) и соответственному снижению пористости (с 75 до 62%) и удельной поверхности мембраны (с 146 до 107 м2 г–1). С помощью потенциометрического метода установлено, что нанесение углеродного слоя на мембраны из волокон Nafen придает им выраженные ионоселективные свойства. Измерения в водном растворе KCl показали, что полученные мембраны являются анион-селективными с числами переноса 0.94 для аниона и 0.06 для катиона. Определена плотность фиксированного заряда мембран путем аппроксимации экспериментальных данных моделью Теорелла–Мейера–Сиверса. Показано, что плотность заряда возрастает с увеличением концентрации электролита. Полученные мембраны могут быть применены в области нано- и ультрафильтрации, а также для разделения заряженных компонентов смесей. Нанесение проводящего углеродного слоя на поверхность пор является перспективным для создания мембран с управляемой ионной селективностью.
A novel type of ion-selective membranes based on NafenTM alumina nanofibers covered with carbon is proposed. The membranes are produced by filtration of Nafen nanofiber suspension through a porous support followed by drying and sintering. A thin carbon layer (up to 2 nm) is deposited on the nanofibers with the help of chemical vapor deposition (CVD). Its formation is confirmed by the results of Raman spectroscopy and visually observed in TEM images. According to low temperature nitrogen adsorption experiments, the formation of carbon layer leads to decreasing pore size (the maximum of pore size distribution shifts from 28 to 16 nm) and the corresponding decrease of porosity (from 75 to 62%) and specific surface area (from 146 to 107 m2 g–1). The measurement of membrane potential in an electrochemical cell shows that the deposition of carbon on the membrane results in high ionic selectivity. In an aqueous KCl solution, the membranes display high anion–selectivity with transference numbers 0.94 for anion and 0.06 for cation. The fixed charge density of membrane is determined by fitting the experimental data with the help of Teorell–Meyer–Sievers model. It is found that the density of fixed membrane charge increases with increasing the electrolyte concentration. The potential applications of produced membranes include nano- and ultrafiltration as well as separation of charged species in mixtures. The formation of conductive carbon layer on the pore surface can be employed for producing membranes with switchable ion-transport selectivity. Keywords: alumina nanofiber, membrane, chemical vapor deposition, carbon, membrane potential measurement, ionic permselectivity, Teorell–Meyer–Sievers model

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН, Академгородок 50-44, Красноярск, Россия
Институт химии и химической технологии СО РАН, Академгородок 50-24, Красноярск, Россия
Красноярский научный центр СО РАН, Академгородок 50, Красноярск, Россия
Национальный исследовательский университет “МИЭТ”, Площадь Шокина, 1, Зеленоград, Москва, Россия

Доп.точки доступа:
Лебедев, Д.В.; Шиверский, А.В.; Симунин, М.М.; Солодовниченко, В.С.; Парфенов, В.А.; Быканова, В.В.; Хартов, С.В.; Рыжков, И.И.

    Experimental and modelling study of ionic selectivity in carbon coated alumina nanofiber membranes
/ I. I. Ryzhkov [et al.] // Chemical Engineering Transactions : Italian Association of Chemical Engineering - AIDIC, 2017. - Vol. 60. - P253-258, DOI 10.3303/CET1760043 . -
Аннотация: A novel type of ion-selective membranes, which combine the advantages of ceramic nanofibrous media with good electrical conductivity, is proposed. The membranes are produced from Nafen alumina nanofibers (diameter around 10 nm) by filtration of nanofiber suspension through a porous support followed by drying and sintering. Electrical conductivity is achieved by depositing a thin carbon layer on the nanofibers by CVD. Raman spectroscopy and TEM are used to confirm the carbon structure formation. The average pore size determined by low temperature nitrogen adsorption experiments lies in the range 15-30 nm. Measurements of membrane potential show that the carbon coated membranes acquire high ionic selectivity (transference numbers 0.94 for anion and 0.06 for cation in aqueous KCl). The fixed membrane charge is determined by fitting the experimental data to Teorell-Meyer-Sievers and Space-charge models. © 2017, AIDIC Servizi S.r.l.

Scopus,
Смотреть статью

Держатели документа:
Institute of Computational Modelling SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russian Federation
Molecular Electronics Department KSC SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russian Federation
National Research University of Electronic Technology, MIET, Shokin square 1, Zelenograd, Moscow, Russian Federation
Institute of Chemistry and Chemical Technology SB RAS, Akademgorodok 50-24, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ryzhkov, I. I.; Lebedev, D. V.; Solodovnichenko, V. S.; Shiverskiy, A. V.; Simunin, M. M.; Parfenov, V. A.

    Carbon Coated Alumina Nanofiber Membranes for Selective Ion Transport
/ V. S. Solodovnichenko [et al.] // Adv. Eng. Mater. - 2017. - Vol. 19, Is. 11. - Ст. 1700244, DOI 10.1002/adem.201700244. - Cited References:60. - This work is supported by the Russian Science Foundation, Project 15-19-10017. The physicochemical analysis of materials was carried out on equipment of Krasnoyarsk Scientific Center of Shared Facilities SB RAS. . - ISSN 1438-1656. - ISSN 1527-2648
РУБ Materials Science, Multidisciplinary

Аннотация: The authors propose a novel type of ion-selective membranes, which combine the advantages of ceramic nanofibrous media with good electrical conductivity. The membranes are produced from Nafen alumina nanofibers (diameter around 10nm) by filtration of nanofiber suspension through a porous support followed by drying and sintering. Electrical conductivity is achieved by depositing a thin carbon layer on the nanofibers by chemical vapor deposition (CVD). Raman and FTIR spectroscopy, X-ray fluorescence analysis, and TEM are used to confirm the carbon structure formation. The deposition of carbon leads to decreasing porosity (from 75 to 62%) and specific surface area (from 146 to 107m(2) g(-1)) of membranes, while the pore size distribution maximum shifts from 28 to 16nm. Measurements of membrane potential in an electrochemical cell show that the carbon coated membranes acquire high ionic selectivity (transference numbers 0.94 for anion and 0.06 for cation in aqueous KCl). Fitting the membrane potential data by the Teorell-Meyer-Sievers model shows that the fixed membrane charge increases proportionally with increasing electrolyte concentration. The carbon coated membranes are ideally polarizable for applied voltages from -0.5 to +0.8V. The potential applications of produced membranes include nano- and ultrafiltration, separation of charged species, and switchable ion-transport selectivity.

WOS,
Смотреть статью

Держатели документа:
Inst Computat Modeling SB RAS, Akademgorodok 50-44, Krasnoyarsk, Russia.
Fed Res Ctr KSC SB RAS, Akademgorodok 50, Krasnoyarsk, Russia.
Natl Res Univ Elect Technol MIET, Shokin Sq 1, Moscow, Russia.
Inst Chem & Chem Technol SB RAS, Akademgorodok 50-24, Krasnoyarsk, Russia.

Доп.точки доступа:
Solodovnichenko, Vera S.; Lebedev, Denis V.; Bykanova, Victoria V.; Shiverskiy, Alexey V.; Simunin, Mikhail M.; Parfenov, Vladimir A.; Ryzhkov, Ilya I.; Russian Science Foundation [15-19-10017]

    Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores
/ I. I. Ryzhkov [et al.] // Phys. Rev. Lett. - 2017. - Vol. 119, Is. 22. - Ст. 226001, DOI 10.1103/PhysRevLett.119.226001. - Cited References:31. - This work is supported by the Russian Science Foundation, Project No. 15-19-10017. . - ISSN 0031-9007. - ISSN 1079-7114
РУБ Physics, Multidisciplinary

Аннотация: When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Inst Computat Modelling SB RAS, Fed Res Ctr KSC SB RAS, Akademgorodok 50, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Ryzhkov, I. I.; Lebedev, D. V.; Solodovnichenko, V. S.; Shiverskiy, A. V.; Simunin, M. M.; Russian Science Foundation [15-19-10017]

    On the origin of membrane potential in membranes with polarizable nanopores
/ I. I. Ryzhkov [et al.] // J. Membr. Sci. - 2018. - Vol. 549. - P616-630, DOI 10.1016/j.memsci.2017.11.073. - Cited References:69. - This work is supported the Russian Science Foundation, Project 15-19-10017. The physicochemical analysis of materials was carried out on the equipment of Krasnoyarsk Scientific Center of Shared Facilities SB RAS. . - ISSN 0376-7388. - ISSN 1873-3123
РУБ Engineering, Chemical + Polymer Science

Аннотация: We report a new mechanism for the generation of membrane potential in polarizable nanoporous membranes separating electrolytes with different concentrations. The electric field generated by diffusion of ions with different mobilities induces a non-uniform surface charge, which results in charge separation inside the nanopore. The corresponding Donnan potentials appear at the pore entrance and exit leading to a dramatic enhancement of membrane potential in comparison with an uncharged non-polarizable membrane. At high concentration contrast, the interaction between electric field and uncompensated charge at a low concentration side results in the development of electrokinetic vortices. The theoretical predictions are based on the Space-Charge model, which is extended to nanopores with polarizable conductive surface for the first time. This model is validated against full Navier-Stokes, Nernst-Planck, and Poisson equations, which are solved in a high aspect ratio nanopore connecting two reservoirs. The experimental measurements of membrane potential of dielectric and conductive membranes in KCl and NaCl aqueous solutions confirm the theoretical results. The membranes are prepared from Nafen nanofibers with similar to 10 nm in diameter and modified by depositing a conductive carbon layer. It is shown theoretically that the membrane potential enhancement becomes greater with decreasing the electrolyte concentration and pore radius. A high sensitivity of membrane potential to the ratio of ion diffusion coefficients is demonstrated. The described phenomenon may find applications in precise determination of ion mobilities, electrochemical and bio-sensing, as well as design of nanofluidic and bioelectronic devices.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Fed Res Ctr KSC SB RAS, Inst Computat Modelling SB RAS, Akademgorodok 50-44, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Ryzhkov, Ilya I.; Lebedev, Denis V.; Solodovnichenko, Vera S.; Minakov, Andrey V.; Simunin, Mikhail M.; Russian Science Foundation [15-19-10017]

    Effect of Electric Field on Ion Transport in Nanoporous Membranes with Conductive Surface
/ D. V. Lebedev [et al.] // Pet. Chem. - 2018. - Vol. 58, Is. 6. - P474-481, DOI 10.1134/S0965544118060075. - Cited References:32. - This work was supported by the Russian Science Foundation, project no. 15-19-10017. The instrumental analysis of the materials was conducted at the Center for collective use of the Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences. . - ISSN 0965-5441. - ISSN 1555-6239
РУБ Chemistry, Organic + Chemistry, Physical + Energy & Fuels + Engineering,

Аннотация: The effect of an external electric field on the ionic conductivity and selective properties of ceramic membranes based on alumina nanofibers coated with a conductive carbon layer has been studied. It has been shown that the membranes are ideally polarizable in the polarizing voltage range of -500 to +500 mV and, therefore, can be used for implementing switchable ionic selectivity. Experiments have revealed that the membrane resistance decreases with a change in the applied potential from 0 to +/- 500 mV. It has been shown that the membrane selectivity can be switched from anion to cation by varying the external potential. The surface charge density of the membranes has been determined in terms of the Teorell-Meyer-Sievers model according to the experimental measurements of the membrane potential.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Computat Modeling, Krasnoyarsk 660036, Russia.
St Petersburg State Univ, Inst Chem, St Petersburg 198504, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Lebedev, D. V.; Solodovnichenko, V. S.; Simunin, M. M.; Ryzhkov, I. I.; Russian Science Foundation [15-19-10017]
532.711 + 66.081.6
T44

    Theoretical Study of Electrolyte Diffusion throughPolarizable Nanopores
[Text] : статья / Ilya I. Ryzhkov, Anton S. Vyatkin, Andrey V. Minakov // Журнал Сибирского федерального университета. Серия: Математика и физика. - 2018. - Т. 11, № 4. - P494-504, DOI 10.17516/1997-1397-2018-11-4-494-504 . - ISSN 1997-1397
   Перевод заглавия: Теоретическое исследование диффузии электролитов через поляризуемые нанопоры
УДК

Аннотация: The diffusion of binary aqueous electrolytes through nanopores with dielectric as well as conductive surface is investigated theoretically on the basis of Space-Charge model. The latter is extended to the case of polarizable nanopore wall. It is shown that the diffusion of ions with different mobilities generates the electric field, which induces non-uniform surface charge in a polarizable nanopore. It results in charge separation inside the pore and leads to a dramatic enhancement of membrane potential in comparison witha non-polarizable nanopore. Thecalculations areperformed for three aqueous electrolytesbased on KCl, NaCl, and LiOH. The influence of electrolyte type and concentration difference applied across the pore on the ion transport and membranepotential is discussed and analyzed.
Проведено теоретическое исследование диффузии бинарных электролитов через нанопоры с диэлектрической,а также проводящей поверхностью на основе модели пространственного заряда. Данная модель обобщена наслучай поляризумой стенки порыспостоянным потенциалом. Показано, что диффузия ионовсразличными подвижностями приводитк возникновениюэлектрического поля, которое индуцирует неравномерное распределение заряда на поверхности проводящей поры. Это вызывает разделение заряда внутри поры и приводит к значительному увеличению мембранного потенциала по сравнению сослучаемдиэлектрической поры. Проведенырасчеты для трех типов водных электролитов на основе KCl, NaCl и LiOH. Исследовано влияние типа электролитаитрансмембраннойразности концентрацийна перенос ионовимембранный потенциал.

РИНЦ

Держатели документа:
Institute of Computational Modelling SB RAS
Institute of Engineering Physics and Radio Electronics Siberian Federal University
Siberian Federal University

Доп.точки доступа:
Ryzhkov, Ilya I.; Рыжков, Илья Игоревич; Vyatkin, Anton S.; Вяткин Антон С.; Minakov, Andrey V.; Минаков Андрей В.
66.081.6
В 58

    Влияние электрического поля на транспорт ионов в нанопористых мембранах с проводящей поверхностью
[Текст] : статья / Д. В. Лебедев [и др.] // Мембраны и мембранные технологии. - 2018. - Т. 8, № 3. - С. 157-165, DOI 10.1134/S2218117218030070 . - ISSN 2218-1172
   Перевод заглавия: The Influence of Electric Field on The Ion Transport on Nanoporous Membranes with Conductive Surface
УДК

Аннотация: В работе исследуется влияние внешнего электрического поля на ионную проводимость и селективные свойства керамических мембран на основе нановолокон оксида алюминия, покрытых проводящим слоем углерода. Показано, что мембраны являются идеально поляризуемыми в области поляризующих напряжений от –500 до +500 мВ, что позволяет использовать их для реализации управляемой ионной селективности. Экспериментально установлено, что сопротивление мембраны уменьшается при изменении приложенного к ней потенциала от 0 до ±500 мВ. Продемонстрирована возможность изменения селективности мембраны от аниона к катиону в зависимости от внешнего потенциала. На основе экспериментальных измерений мембранного потенциала определена поверхностная плотность заряда мембран с помощью модели Теорелла–Мейера–Сиверса.
In this work, we investigate the influence of external electric field on the ionic conductivity and selectivity of ceramic membranes based on alumina nanofibers covered with conductive carbon layer. It is shown that the membranes are ideally polarizable in the range of voltages from –500 mV to +500 mV, which makes them suitable candidates for realizing switchable ionic selectivity. It is found experimentally that the membrane resistance decreases with increasing the potential applied to the membrane from 0 to ±500 mV. The possibility of changing the membrane selectivity from anion to cation depending on the applied potential is demonstrated. The membrane surface charge density is determined from experimental measurements of membrane potential with the help of Teorell-Meyer-Sievers model. Keywords: ceramic membranes, nanopore, conductive surface, ionic selectivity, ionic conductivity, switchable ion transport

РИНЦ

Держатели документа:
Красноярский научный центр СО РАН
Санкт-Петербургский государственный университет, Институт химии, Университетский проспект, 26, Санкт-Петербург, Петергоф, 198504 Россия
Сибирский федеральный университет

Доп.точки доступа:
Лебедев, Д.В.; Lebedev D.V.; Солодовниченко, В.С.; Solodovnichenko V.S.; Симунин, М.М.; Simunin M.M.; Рыжков, И.И.; Ryzhkov I.I.