Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 7

    Reciprocal relations between kinetic curves
[Text] : статья / G. S. Yablonsky [et al.] // EPL. - 2011. - Vol. 93, № 2. - Ст. 20004DOI 10.1209/0295-5075/93/20004 . -

Аннотация: We study coupled irreversible processes. For linear or linearized kinetics with microreversibility, ẋ=Kx , the kinetic operator K is symmetric in the entropic inner product. This form of Onsager's reciprocal relations implies that the shift in time, exp(Kt), is also a symmetric operator. This generates the reciprocity relations between the kinetic curves. For example, for the Master equation, if we start the process from the i-th pure state and measure the probability pj(t) of the j-th state (j≠i), and, similarly, measure pi(t) for the process, which starts at the j-th pure state, then the ratio of these two probabilities pj(t)/pi(t) is constant in time and coincides with the ratio of the equilibrium probabilities. We study similar and more general reciprocal relations between the kinetic curves. The experimental evidence provided as an example is from the reversible water gas shift reaction over iron oxide catalyst. The experimental data are obtained using Temporal Analysis of Products (TAP) pulse-response studies. These offer excellent confirmation within the experimental error.

Полный текст на сайте правообладателя


Доп.точки доступа:
Yablonsky, G.S.; Gorban, A.N.; Горбань, Александр Николаевич; Constales, D.; Galvita, V.V.; Marin, G.B.

    Pickup preventing coating for steel castings
/ I. V. Uskov, G. G. Krushenko // Litejnoe Proizvodstvo. - 1994. - Is. 3. - P9-10 . - ISSN 0024-449X

Кл.слова (ненормированные):
Additives -- Alumina -- Composition effects -- Metal casting -- Molds -- Physical properties -- Powders -- Protective coatings -- Roughness measurement -- Steel -- Pickup (molding sand) -- Foundry practice

Аннотация: A study is made of a standard pickup preventing coating made from white synthetic aluminium oxide powder and polyvinylbutyral varnish and used for moulds and cores. With 1.5-1.6% of ultradispersed powder in place of white synthetic aluminum oxide, a new coating has been developed having a sedimentation stability of 89 against 70 for the standard coating. Casting surfaces of steel 35L show the roughness of the new coating of 185-190 be absent pickup throughout the casted sample. Members of steels 110G13L and 45L were also put through tests.

Scopus

Держатели документа:
Vychislitel'nyj Tsentr SO RAN, Krasnoyarsk, Russian Federation
ИВМ СО РАН

Доп.точки доступа:
Uskov, I.V.; Krushenko, G.G.; Крушенко, Генрих Гаврилович

    Ion-selective membranes based on aluminum oxide fibers
[Text] : abstract / D. V. Lebedev [et al.] // Proceedings of International conference «Ion transport in organic and inorganic membranes». - Krasnodar, 2016. - P170-172



Доп.точки доступа:
Lebedev, D.V.; Shiverskii, A. V.; Simunin, M. M.; Khartov, S. V.; Romashkin, A.V.; Ryzhkov, I.I.; Рыжков, Илья Игоревич

    Titanium nitride as light trapping plasmonic material in silicon solar cell
/ N. Venugopal [et al.] // Opt Mater. - 2017. - Vol. 72. - P397-402, DOI 10.1016/j.optmat.2017.06.035 . - ISSN 0925-3467

Кл.слова (ненормированные):
Photovoltaics -- Plasmonics -- Titanium nitride -- Absorption spectroscopy -- CMOS integrated circuits -- Efficiency -- Gold -- Metals -- MOS devices -- Nanoparticles -- Nanostructured materials -- Nitrides -- Optoelectronic devices -- Plasmons -- Semiconductor devices -- Silicon -- Silver -- Solar cells -- Solar power generation -- Thin film solar cells -- Thin films -- Time domain analysis -- Tin oxides -- Titanium -- Titanium compounds -- Titanium nitride -- Absorption enhancement -- Complementary metal oxide semiconductors -- Nanoparticle diameter -- Other opto-electronic devices -- Photovoltaics -- Plasmonic nanoparticle -- Plasmonics -- Thin-film silicon solar cells -- Silicon solar cells

Аннотация: Light trapping is a crucial prominence to improve the efficiency in thin film solar cells. However, last few years, plasmonic based thin film solar cells shows potential structure to improve efficiency in photovoltaics. In order to achieve the high efficiency in plasmonic based thin film solar cells, traditionally noble metals like Silver (Ag) and Gold (Au) are extensively used due to their ability to localize the light in nanoscale structures. In this paper, we numerically demonstrated the absorption enhancement due to the incorporation of novel plasmonic TiN nanoparticles on thin film Silicon Solar cells. Absorption enhancement significantly affected by TiN plasmonic nanoparticles on thin film silicon was studied using Finite-Difference-Time-Domain Method (FDTD). The optimal absorption enhancement 1.2 was achieved for TiN nanoparticles with the diameter of 100 nm. The results show that the plasmonic effect significantly dominant to achieve maximum absorption enhancement g(?) at longer wavelengths (red and near infrared) and as comparable with Au nanoparticle on thin film Silicon. The absorption enhancement can be tuned to the desired position of solar spectrum by adjusting the size of TiN nanoparticles. Effect of nanoparticle diameters on the absorption enhancement was also thoroughly analyzed. The numerically simulated results show that TiN can play the similar role as gold nanoparticles on thin film silicon solar cells. Furthermore, TiN plasmonic material is cheap, abundant and more Complementary Metal Oxide Semiconductor (CMOS) compatible material than traditional plasmonic metals like Ag and Au, which can be easy integration with other optoelectronic devices. © 2017 Elsevier B.V.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
L.V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Venugopal, N.; Gerasimov, V. S.; Ershov, A. E.; Karpov, S. V.; Polyutov, S. P.
Пат. 2430807 Российская Федерация, МПК 2430807.
    СПОСОБ ПОЛУЧЕНИЯ СЛИТКОВ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ ПОЛУНЕПРЕРЫВНЫМ ЛИТЬЕМ
[Текст] / Генрих Гаврилович Крушенко ; патентообладатель Учреждение Российской академии наук Институт вычислительного моделирования Сибирского отделения Российской академии наук (ИВМ СО РАН) ; Опубл. 18.11.2009 ; МПК 2430807. - [Б. м. : б. и.], 2011
Перевод заглавия: PRODUCING INGOTS FROM ALUMINIUM ALLOYS BY SEMI-CONTINUOUS CASTING
   Перевод заглавия: PRODUCING INGOTS FROM ALUMINIUM ALLOYS BY SEMI-CONTINUOUS CASTING

Аннотация: <p num="16">Изобретение относится к металлургии. Способ включает введение в расплав в кристаллизаторе частиц оксида алюминия в виде прутка. Пруток изготовляют путем помещения гранул из алюминиевого сплава в контейнер, его нагрева и прессования с дроблением оксидной пленки гранул на дисперсные частицы при формировании прутка в отверстии фильеры пресса. Обеспечивается дисперсное упрочнение алюминиевого сплава частицами оксида алюминия, повышение пластичности сплава и упрощение технологии изготовления гранул. 1 табл. </p>
<p num="17">FIELD: process engineering.</p> <p num="18">SUBSTANCE: invention relates to metallurgy. Proposed method comprises adding rod-like aluminium oxide particles to crystalliser melt. Said rod is produced in placing aluminium alloy granules into container for them to be heated and formed with crushing granule oxide film to dispersed particles on fitting rod in die hole.</p> <p num="19">EFFECT: hardened aluminium alloy, simplified process.</p> <p num="20">1 tbl, 1 ex </p>

РИНЦ

Держатели документа:
Учреждение Российской академии наук Институт вычислительного моделирования Сибирского отделения Российской академии наук (ИВМ СО РАН)

Доп.точки доступа:
Крушенко, Генрих Гаврилович; Krushenko Genrikh Gavrilovich; Учреждение Российской академии наук Институт вычислительного моделирования Сибирского отделения Российской академии наук (ИВМ СО РАН)
Свободных экз. нет

    Synthesis and Electrochemical Properties of CMK-3 with Particles of Nickel, Cobalt and Copper
/ Y. N. Zaitseva [и др.] // J. Sib. Fed. Univ.-Chem. - 2019. - Vol. 12, Is. 3. - С. 395-404, DOI 10.17516/1998-2836-0136. - Cited References:19 . - ISSN 1998-2836. - ISSN 2313-6049
РУБ Chemistry, Multidisciplinary

Аннотация: Mesostructured carbon material CMK-3 for electrodes of electrochemical capacitors was obtained by the method of template synthesis. In order to increase the capacitance characteristics, impregnation of metal ions (Co, Ni, and Cu) into the structure of mesoporous carbon CMK-3 was carried out. The structure of the obtained materials was studied by X-ray diffraction and gas adsorption. The study by TEM showed that highly dispersed, nanosized particles are metal oxides Co, Ni and Cu with the size of 30-50 nm. The particles are uniformly distributed inside the carbon material. Electrochemical characteristics were studied in aqueous electrolytes (1M KCl and 1M KOH). It has been established that the impregnation of metal ions increases in the specific capacity of the mesoporous carbon material by about 30 % (from 110 to 156 F/g) in KOH.

WOS,
Смотреть статью

Держатели документа:
FRC Krasnoyarsk Sci Ctr SB RAS, Inst Chem & Chem Technol SB RAS, 50-24 Akademgorodok, Krasnoyarsk 660036, Russia.
FRC Krasnoyarsk Sci Ctr SB RAS, Inst Computat Modeling SB RAS, 50-44 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 79 Svobodny, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Zaitseva, Yulia N.; Novikova, Svetlana A.; Parfenov, Vladimir A.; Vyatkin, Anton S.; Ryzhkov, Ilya I.

    Super-efficient laser hyperthermia of malignant cells with core-shell nanoparticles based on alternative plasmonic materials
/ A. S. Kostyukov [et al.] // J. Quant. Spectrosc. Radiat. Transf. - 2019. - Vol. 236. - Ст. 106599, DOI 10.1016/j.jqsrt.2019.106599 . - ISSN 0022-4073

Кл.слова (ненормированные):
Conducting oxides -- Nanoparticle -- Nanoshell -- Plasmonic photothermal therapy -- Aluminum oxide -- Core shell nanoparticles -- Efficiency -- Gallium compounds -- II-VI semiconductors -- Nanoparticles -- Nanoshells -- Nanostructured materials -- Optical films -- Plasmonics -- Pulsed lasers -- Shells (structures) -- Silica -- Specific heat -- Transparent conducting oxides -- Zinc oxide -- Aluminum-doped zinc oxide -- Comparative studies -- Conducting oxides -- Gallium doped zinc oxides -- Nanoshell -- Orders of magnitude -- Photothermal therapy -- Spatial localization -- Plasmonic nanoparticles -- aluminum -- cell -- comparative study -- gold -- nanoparticle -- oxide -- zinc

Аннотация: New type of highly absorbing core-shell AZO/Au (aluminum doped zinc oxide/gold) and GZO/Au (gallium doped zinc oxide/gold) nanoparticles have been proposed for hyperthermia of malignant cells purposes. Comparative studies of pulsed laser hyperthermia were performed for Au nanoshells with AZO core and traditional SiO2 (quartz) core. We show that under the same conditions, the hyperthermia efficiency in the case of AZO increases by several orders of magnitude compared to SiO2 due to low heat capacity of AZO. Similar results have been obtained for GZO core which has same heat capacity. Calculations for pico-, nano- and sub-microsecond pulses demonstrate that reduced pulse duration results in strong spatial localization of overheated areas around nanoparticles, which ensures the absence of negative effects to the normal tissue. Moreover, we propose new alternative way for the optimization of hyperthermia efficiency: instead of maximizing the absorption of nanoparticles, we enhance the thermal damage effect on the membrane of malignant cell. This strategy allows to find the parameters of nanoparticle and the incident radiation for the most effective therapy. © 2019 Elsevier Ltd

Scopus,
Смотреть статью

Держатели документа:
Siberian Federal UniversityKrasnoyarsk, Russian Federation
Institute of Computational Modeling SB RASKrasnoyarsk, Russian Federation
Siberian State University of Science and TechnologyKrasnoyarsk, Russian Federation
The Institute of Optics, University of RochesterNY, United States
Kirensky Institute of Physics, Federal Research Center KSC SB RASKrasnoyarsk, Russian Federation

Доп.точки доступа:
Kostyukov, A. S.; Ershov, A. E.; Gerasimov, V. S.; Filimonov, S. A.; Rasskazov, I. L.; Karpov, S. V.