Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 56
   В3
   E68

    Effects of MHD shocks propagating along magnetic flux tubes in a dipole magnetic field
[Text] : статья / N.V. Erkaev, V.A. Shaidurov, V.S. Semenov, H.K. Biernat // Nonlinear Processes in Geophysics. - 2002. - Vol. 9. - p. 163-172

Аннотация: Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the mag-netic flux tube decreases enormously with increasing mag-netic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically us-ing the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing mag-netic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter be-ing considered as a source of plasma pressure pulses.

http://icm.krasn.ru/refextra.php?id=2437,
Полный текст

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Shaidurov, V.A.; Шайдуров В.А.; Semenov, V.S.; Семенов В. С.; Biernat, H.K.; Еркаев, Николай Васильевич
   В3
   E68

    Ideal Magnetohydrodynamic Flow Around a Blunt Body under Anisotropic Pressure
[Text]. - Electronic data (106 Kb)
. - Режим доступа: http://icm.krasn.ru/refextra.php?id=1472. - Электрон. версия печ. публикации . - Режим доступа: http://library.krasn.ru/trudy/2000/1472erkaev_PHP03413_eng.pdf (Полный текст) : статья / Erkaev N.V., Biernat H.K., Farrugia C.J. - Electronic data (106 Kb) // Physics of Plasmas. - 2000. - Vol. 7, № 7. - p. 3413-3420
ГРНТИ

Аннотация: The plasma flow past a blunt obstacle in an ideal magnetohydrodynamic ~MHD! model is studied, taking into account the tensorial nature of the plasma pressure. Three different closure relations are explored and compared with one another. The first one is the adiabatic model proposed by Chew, Goldberger, and Low. The second closure is based on the mirror instability criterion, while the third depends on an empirical closure equation obtained from observations of solar wind flow past the Earth's magnetosphere. The latter is related with the criterion of the anisotropic ion cyclotron instability. In the presented model, the total pressure, defined as the sum of magnetic pressure and perpendicular plasma pressure, is assumed to be a known function of Cartesian coordinates. The calculation is based on the Newtonian approximation for the total pressure along the obstacle and on a quadratic behavior with distance from the obstacle along the normal direction. Profiles of magnetic field strength and plasma parameters are presented along the stagnation stream line between the shock and obstacle of an ideal plasma flow with anisotropy in thermal pressure and temperature.

http://icm.krasn.ru/refextra.php?id=1472,
Полный текст

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Biernat, H.K.; Farrugia, C.J.; Еркаев, Николай Васильевич

    Development of structural simulation and strength analysis methods for machine-buliding designing
[Текст] : научное издание / V. V. Moskvichev, L. I. Koksharov // Proceeding of the Soviet-Chinese Simposium. Mathematical simulation and application software. - 1991. - С. 51-60



Доп.точки доступа:
Shokin Yu.I. \ed.\; Koksharov, L.I.; Кокшаров, Игорь Ильич; Москвичев, Владимир Викторович

    Deep Solar Activity Minimum 2007-2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere
/ C. J. Farrugia [et al.] // Sol. Phys. - 2012. - Vol. 281, Is. 1. - pp. 461-489, DOI 10.1007/s11207-012-0119-1. - Cited References: 53 . - 29. - ISSN 0038-0938
РУБ Astronomy & Astrophysics

Аннотация: We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007-2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A. We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfv,n Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind-magnetosphere interactions. We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from Wind and ground-based observations: i) the dayside contribution to the cross-polar cap potential (CPCP), and ii) the shapes of the magnetopause and bow shock. For i) we find a low interplanetary electric field of 1.3 +/- 0.9 mV m(-1) and a CPCP of 37.3 +/- 20.2 kV. The auroral activity is closely correlated to the prevalent stream-stream interactions. We suggest that the Alfven wave trains in the fast streams and Kelvin-Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For ii) we determine 328 magnetopause and 271 bow shock crossings made by Geotail, Cluster 1, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey. We use the same numerical approach as in Fairfield's (J. Geophys. Res. 76, 7600, 1971) empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 R-E and 14.35 R-E, respectively. When comparing with Fairfield's (1971) classic result, we find that the subsolar magnetosheath is thinner by similar to 1 R-E. This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause. The magnetopause is more flared than in Fairfield's model. By contrast the bow shock is less flared, and the latter is the result of weaker MHD forces.

Полный текст


Доп.точки доступа:
Farrugia, C.J.; Harris, B.; Leitner, M.; Mostl, C.; Galvin, A.B.; Simunac, K.D.C.; Torbert, R.B.; Temmer, M.B.; Veronig, A.M.; Erkaev, N.V.; Еркаев, Николай Васильевич; Szabo, A.; Ogilvie, K.W.; Luhmann, J.G.; Osherovich, V.A.

    Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at X =-12 Re
[Text] / C.J. Farrugia [et al.] // J. Geophys. Res-Space Phys. - 2010. - Vol. 115. - Ст. A08227, DOI 10.1029/2009JA015128. - Cited References: 34. - The authors would like to thank David Burgess for helpful discussions. Part of this work was done when NVE was on a research visit to the Space Science Center of the University of New Hampshire, USA. This work is supported by NASA grants NNX08AD11G and NNG06GD41G, and also by RFBR grants 07-05-00135, 09-05-91000-ANF_a and by Program 16 of RAS. R. P. Lin has been supported in part by NASA grant NNX08AE34G at UC Berkeley, and the WCU grant (R31-10016) funded by the Korean Ministry of Education, Science and Technology. We thank D. J. McComas and H. J. Singer for the ACE plasma data and GOES magnetic field data, respectively, obtained through NASA cdaweb site. . - ISSN 0148-0227
РУБ Astronomy & Astrophysics

Аннотация: While there are many approximations describing the flow of the solar wind past the magnetosphere in the magnetosheath, the case of perfectly aligned (parallel or antiparallel) interplanetary magnetic field (IMF) and solar wind flow vectors can be treated exactly in a magnetohydrodynamic (MHD) approach. In this work we examine a case of nearly-opposed (to within 15) interplanetary field and flow vectors, which occurred on October 24-25, 2001 during passage of the last interplanetary coronal mass ejection in an ejecta merger. Interplanetary data are from the ACE spacecraft. Simultaneously Wind was crossing the near-Earth (X similar to -13 Re) geomagnetic tail and subsequently made an approximately 5-hour-long magnetosheath crossing close to the ecliptic plane (Z = -0.7 Re). Geomagnetic activity was returning steadily to quiet, "ground" conditions. We first compare the predictions of the Spreiter and Rizzi theory with the Wind magnetosheath observations and find fair agreement, in particular as regards the proportionality of the magnetic field strength and the product of the plasma density and bulk speed. We then carry out a small-perturbation analysis of the Spreiter and Rizzi solution to account for the small IMF components perpendicular to the flow vector. The resulting expression is compared to the time series of the observations and satisfactory agreement is obtained. We also present and discuss observations in the dawnside boundary layer of pulsed, high-speed (v similar to 600 km/s) flows exceeding the solar wind flow speeds. We examine various generating mechanisms and suggest that the most likely cause is a wave of frequency 3.2 mHz excited at the inner edge of the boundary layer by the Kelvin-Helmholtz instability.


Доп.точки доступа:
Farrugia, C.J.; Erkaev, N.V.; Еркаев, Николай Васильевич; Torbert, R.B.; Biernat, H.K.; Gratton, F.T.; Szabo, A.; Kucharek, H.; Matsui, H.; Lin, R.P.; Ogilvie, K.W.; Lepping, R.P.; Smith, C.W.

    Numerical simulation of deformation of a metal foam
/ O. V. Sadovskaya // Proceedings of XLI International Summer School–Conference APM 2013. - 2013. - P484-491

Аннотация: Mathematical model for the description of deformation of a porous metal is constructed on the basis of generalized rheological method. In this method a new rheological element, so-called rigid contact, is used to describe the uniaxial deformation of materials with different resistance to tension and compression. Change in the resistance of a porous metal to external loads, when the collapse of pores occurs, is taken into account by means of the von Mises–Schleicher strength condition. Irreversible deformation is described with the help of yield condition, modeling the plastic loss of stability of porous skeleton. For a homogeneous porous medium the fields of displacements and stresses in the problem of radial expansion of spherical and cylindrical cavities under the action of internal pressure considering the effect of collapse of pores are constructed in closed form. The algorithm of numerical realization of the model of dynamic deformation of metal foams on multiprocessor computer systems of the cluster type is worked out

Полный текст

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Садовская, Оксана Викторовна

    Jump conditions at fast shocks in an anisotropic magnetized plasma
[Text] / D. F. Vogl [et al.] // PLANETARY MAGNETOSPHERES. Ser. ADVANCES IN SPACE RESEARCH : ELSEVIER SCIENCE BV, 2001. - Vol. 28: D3 1/C3 3 Symposium of COSPAR Scientific Commission D held at the 33rd COSPAR Scientific Assembly (JUL, 2000, WARSAW, POLAND), Is. 6. - P851-856, DOI 10.1016/S0273-1177(01)00503-8. - Cited References: 12 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: In this paper we report on the variations of the magnetic field strength and the plasma parameters across a fast shock as functions of upstream Alfven Mach numbers and pressure anisotropy downstream of the shock. In our study we consider an oblique shock where the angle between the magnetic field vector and the normal vector upstream of the shock is chosen to be 45degrees. We further use two threshold conditions of plasma instabilities as additional equations to bound the range of the pressure anisotropy, p(perpendicular to)/p(\\), i.e., the criterion of the mirror instability and that of the fire-hose instability. We found that the variations of the parallel pressure, the parallel temperature, as well as the tangential component of the velocity are most sensitive to the pressure anisotropy downstream of the shock, whereas the variations of the plasma density, the normal velocity, the magnetic field strength, and perpendicular pressure and temperature with respect to the magnetic field show much less pronounced dependence on the anisotropy. (C) 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.


Доп.точки доступа:
Vogl, D.F.; Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Muhlbachler, S.; Farrugia, C.J.

    MHD modelling of the magnetosheath with anisotropic plasma pressure
[Text] / N. V. Erkaev [et al.] // PLANETARY MAGNETOSPHERES. Ser. ADVANCES IN SPACE RESEARCH : ELSEVIER SCIENCE BV, 2001. - Vol. 28: D3 1/C3 3 Symposium of COSPAR Scientific Commission D held at the 33rd COSPAR Scientific Assembly (JUL, 2000, WARSAW, POLAND), Is. 6. - P873-877, DOI 10.1016/S0273-1177(01)00522-1. - Cited References: 16 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: We study the solar wind flow in the Earth's magnetosheath using a three-dimensional, ideal magnetohydrodynamic (MHD) model with anisotropic plasma pressure. Four different closure relations are examined and compared with each other, i) The double adiabatic model; ii) the empirical relation with respect to the criterion of the anisotropic ion cyclotron instability; iii) the mirror instability criterion, and (iv) the combination of the mirror and the anisotropic ion cyclotron instability. Profiles of magnetic field strength and plasma parameters for the different closure relations are presented and compared with each other along the stagnation stream line between the shock and the obstacle. We find that the main body of the magnetosheath is mirror unstable. This is a reason to combine both, mirror and ion cyclotron instability criteria to close the ideal MHD model. (C) 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Biernat, H.K.; Vogl, D.F.; Farrugia, C.J.

    Three-dimensional, one-fluid, ideal MHD model of magnetosheath flow with anisotropic pressure
[Text] / N. V. Erkaev, C. J. Farrugia, H. K. Biernat // J. Geophys. Res-Space Phys. - 1999. - Vol. 104, Is. A4. - P6877-6887, DOI 10.1029/1998JA900134. - Cited References: 29 . - ISSN 0148-0227
РУБ Astronomy & Astrophysics

Аннотация: We present a three-dimensional, one-fluid, steady state magnetohydrodynamic (MHD) model of magnetosheath flow near the subsolar line with unequal plasma pressures perpendicular (P-perpendicular to) and parallel (P-parallel to) to the magnetic field (P-perpendicular to P-parallel to) Aside from an assumption on the total pressure normal to the magnetopause, our analytical-numerical method is completely general and is an extension of our isotropic, "magnetic string" MHD model, which we describe in detail here. The MHD equations are closed by a relation between P-perpendicular to and P-parallel to as in the Bounded Anisotropy Model [Denton et al., 1994] corresponding to the threshold of the electromagnetic proton cyclotron wave instability. We take an IMF oriented perpendicular to the solar wind velocity. As boundary conditions, we have Rankine-Hugoniot relations at the bow shock and a no-flow condition at the magnetopause. We obtain steady state profiles of the magnetic field and plasma parameters for upstream sonic and Alfven Mach numbers equal to 10, and compare them with the isotropic case (P-parallel to = P-perpendicular to). Anisotropy slightly thickens the magnetosheath. In the anisotropic model, the density, the parallel and perpendicular temperatures, plasma pressures, and betas all decrease toward the magnetopause. Isotropic profiles lie between those of quantities perpendicular and parallel to the field. Anisotropy has considerable effect on the density profile, which lies below that in the isotropic limit throughout the magnetosheath. Density depletion results from stretching of magnetic field lines, which is caused by field-aligned plasma flow. Approaching the magnetopause, the tangential component of velocity parallel to the magnetic field decreases, while the tangential component perpendicular to the magnetic field increases. These are features characterizing a stagnation line flow at the magnetopause. The acceleration along the magnetic field is produced by the gradient of P-parallel to and the mirror force, which depends on anisotropy. They both make substantial contributions and are responsible for the changes we see;from isotropy. The acceleration perpendicular to magnetic field is also larger than in the case of isotropy and is caused by the gradient of total pressure, the magnetic strength, and the mirror force. In addition, acceleration in both directions is affected by the decreasing density.


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Farrugia, C.J.; Biernat, H.K.

    Numerical modelling of solar wind flow about nonaxisymmetric magnetospheres: Planets Jupiter and Saturn
[Text] / C. J. Farrugia, H. K. Biernat, N. V. Erkaev // PLANETARY IONOSPHERES AND MAGNETOSPHERES. Ser. ADVANCES IN SPACE RESEARCH-SERIES : PERGAMON PRESS LTD, 1997. - Vol. 20: C3.2 Symposium of COSPAR Scientific Commission C on Planetary Ionospheres and Magnetospheres, at the 31st COSPAR Scientific Assembly (JUL 14-21, 1996, BIRMINGHAM, ENGLAND), Is. 2. - P209-213, DOI 10.1016/S0273-1177(97)00535-8. - Cited References: 15 . - ISBN 0273-1177. - ISBN 0-08-043297-2
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: We discuss results on the solar wind flow past the non-axisymmetric magnetospheres of planets Jupiter and Saturn obtained by integrating numerically the dissipationless MHD equations under simplifying assumptions. We model these equatorially broadened magnetospheres as paraboloids with two different radii of curvature at the subsolar point. The thickness of the magnetosheath and the width and structure of the plasma depletion layer are found to be strong functions of the orientation of the interplanetary magnetic field (IMF). The effect of the IMF on the magnetosheath is strongest (weakest) when the IMF is directed perpendicular (parallel) to the rotational equator. For any intermediate IMF orientation, a smooth rotation of the magnetosheath magnetic field towards the direction of the planet's rotational axis is superimposed on the field strength enhancement (and the density reduction) as the respective magnetopauses are approached. These effects are more pronounced at Jupiter than at Saturn. (C) 1997 COSPAR. Published by Elsevier Science Ltd.


Доп.точки доступа:
Farrugia, C.J.; Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич

    OBSERVATIONS IN THE SHEATH REGION AHEAD OF A MAGNETIC CLOUD AND IN THE DAYSIDE MAGNETOSHEATH DURING MAGNETIC CLOUD PASSAGE
[Text] / C. J. FARRUGIA [et al.] ; ed. H. K. BIERNAT // MAGNETOSHEATH. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON PRESS LTD, 1994. - Vol. 14: Topical Meeting of the COSPAR Interdisciplinary Scientific Commission D of the COSPAR 29th Plenary Meeting (AUG 28-SEP 05, 1992, WASHINGTON, DC), Is. 7. - P105-110, DOI 10.1016/0273-1177(94)90055-8. - Cited References: 15 . - ISBN 0273-1177. - ISBN 0-08-042484-8
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences
Рубрики:
MAGNETOPAUSE
   SHOCK

Аннотация: We present magnetic field and particle (protons and electrons) observations in the sheath region behind an interplanetary shock driven by a magnetic cloud, and in the magnetic cloud itself. We also discuss observations in the dayside terrestrial magnetosheath during cloud passage. We find that the region ahead of the cloud is in pressure balance. Further, throughout its extent ( 0.06 AU), the magnetic field strength is anticorrelated with the plasma density, with the latter decreasing steadily as the cloud is approached. This behaviour is indicative of magnetic forces influencing the Row topology and highlights a large-scale breakdown of predictions based solely on gas dynamical considerations. We also study density stuctures inside the cloud which result in an undulating dynamic pressure being applied to the magnetopause causing it to oscillate with amplitudes of similar to 1 similar to 3 Re and period similar to 2h.


Доп.точки доступа:
FARRUGIA, C.J.; FITZENREITER, R.J.; BURLAGA, L.F.; Erkaev, N.V.; Еркаев, Николай Васильевич; OSHEROVICH, V.A.; BIERNAT, H.K.; FAZAKERLEY, A.; BIERNAT, H.K. \ed.\

    Slow mode structure in the nightside magnetosheath related to IMF draping
[Text] / N. V. Erkaev [et al.] // J. Geophys. Res-Space Phys. - 2014. - Vol. 119, Is. 2. - P. 1121-1128, DOI 10.1002/2013JA019514. - Cited References: 23. - This work was done while NVE was on a research visit to the Space Science Center of UNH. This work is supported by RFBR grant N 12-05-00152-a and also by the Austrian "Fonds zur Forderung der wissenschaftlichen Forschung" under Project I 193-N16 and the "Verwaltungsstelle fur Auslandsbeziehungen" of the Austrian Academy of Sciences. Work by CJF was supported by NASA grants NNX10AQ29G and NNX13AP39G. NVE and CJF acknowledge the support by the International Space Science Institute (ISSI, Switzerland) and discussions within the ISSI Team 214 on Flow-Driven Instabilities of the Sun-Earth System. . - ISSN 2169-9380. - ISSN 2169-9402
РУБ Astronomy & Astrophysics

Аннотация: We apply a semianalytic magnetohydrodynamic approach to describe effects in the nightside magnetosheath related to accelerated magnetosheath flows caused by the draping of interplanetary magnetic field (IMF). Assuming a northward IMF direction, we show the development of slow mode fronts in the far tail (tailward of approximately -60 RmE). We find that accelerated flows north and south of the equator start to converge toward lower latitudes. The ensuing plasma compression gives rise to slow mode waves in the equatorial region which, further down the tail, evolve into slow mode shocks. These fronts propagating along the magnetic field lines are characterized by sharp increases of plasma density, pressure, and temperature and a decrease in the magnetic field strength. The magnetic pressure exhibits an anticorrelation with the plasma pressure, but the total pressure is fairly constant across the fronts. The field-aligned plasma velocity component anticorrelates with the plasma density, while the perpendicular velocity component does not have sharp variations at the fronts. For northward IMF, these fronts appear near the equatorial region and then propagate to higher latitudes. This effect is not very sensitive to the particular shape of the magnetopause. Lowering the upstream Alfven Mach number increases the strength of the slow mode waves, which also develop closer to Earth. We predict that this effect can be observed by space probes skimming the far tail. Key Points Magnetic field lines drape around the magnetosphere The field line bend makes the flows converge in the far tail We show that these give rise to slow mode waves

Полный текст (доступен только в локальной сети)

Держатели документа:
ИВМ СО РАН

Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Farrugia, C.J.; Mezentsev, A.V.; Torbert, R.B.; Biernat, H.K.; RFBR [N 12-05-00152-a]; Austrian "Fonds zur Forderung der wissenschaftlichen Forschung" [I 193-N16]; "Verwaltungsstelle fur Auslandsbeziehungen" of the Austrian Academy of Sciences; NASA [NNX10AQ29G, NNX13AP39G]; International Space Science Institute (ISSI, Switzerland)

    Use of numeric methods for calculating the reliability indices of damaged structural components
/ N. A. Makhutov, I. I. Koksharov, A. M. Lepikhin // Strength of Materials. - 1992. - Vol. 23, Is. 5. - P481-488, DOI 10.1007/BF00771443 . - ISSN 0039-2316
Аннотация: Methods used to calculate the reliability indices of structural components (the distribution function of remaining life, the probability of failure-free service, and the risk function) as applies to problems of the propagation of defects under a cyclic load are examined. The potentials of the method of "numeric experiments" are demonstrated in an example of the calculation of crack kinetics in a branch pipe in tension with bending. The reliability indices are calculated for a plane element with a crack by means of numeric integration of determining equations. It is possible to solve problems with different laws governing crack propagation and forms of density distribution for the size of the initial defect within the framework of these methods. A combination of approaches of fracture mechanics and reliability theory with numeric methods of calculation make it possible to evaluate the reliability indices of a defective structural component. В© 1992 Plenum Publishing Corporation.

Scopus

Держатели документа:
A. A. Blagonravov Institute of Machinery, Academy of Sciences of the USSR, Moscow, Russian Federation
Computer Center, Siberian Branch, Academy of Sciences of the USSR, Krasnoyarsk, Russian Federation
ИВМ СО РАН

Доп.точки доступа:
Makhutov, N.A.; Махутов, Николай Андреевич; Koksharov, I.I.; Кокшаров, Игорь Ильич; Lepikhin, A.M.; Лепихин, Анатолий Михайлович

    Thermocyclic treatment of thin-walled castings of the AL2 alloy
/ G. G. Krushenko [и др.] // Metallovedenie i Termicheskaya Obrabotka Metallov. - 1993. - Is. 3. - P3-4 . - ISSN 0026-0819

Кл.слова (ненормированные):
Age hardening -- Aluminum castings -- Heat treatment -- Microstructure -- Solid solutions -- Strength of materials -- Tempering -- Thermocycling -- Aluminum alloys

Аннотация: Blades of a three-blade boat screw propeller 40 mm in diameter chill cast from the AL2 alloy (11.2% Si; 0.4% Fe; 0.01% Mg; 0.02% Cu; Zn - traces) were studied. A method of correcting ultimate rupture strength ?v during tensile tests was suggested. Making allowances for ?v calculation results using the method described, the optimal conditions of thermocyclic treatment (TCT) of the AL2 alloy were chosen. TCT of the blades was carried out by the scheme 500-20В°C or 550-20В°C with the number of cycles n=3,5,7 allowance to stand for 10 min at the highest and lowest temperatures and cooling from the highest temperature in the final cycle either in the air or in water. The highest ?v values are attained after TCT by the scheme 500-20В°C (N=3) with subsequent cooling in water.

Scopus

Держатели документа:
Vychislitel'nyj Tsentr Sibirskogo, Otdeleniya RAN, Krasnoyarsk, Russian Federation
ИВМ СО РАН

Доп.точки доступа:
Krushenko, G.G.; Крушенко, Генрих Гаврилович; Anikina, V.I.; Balashov, B.A.; Vasilenko, Z.A.; Kovaleva, A.A.

    Ultimate strength correction method as applied to curved aluminum alloy test specimens
[Text] / I. I. Koksharov, G. G. Krushenko // Ind. Lab. - 1996. - Vol. 62, Is. 5. - P309-310. - Cited References: 4 . - ISSN 0019-8447
РУБ Instruments & Instrumentation + Materials Science, Characterization & Testing

Аннотация: A method of correction for the ultimate strength rho(u) and its application to curved test specimens cut out of outboard motor propeller blades cast from commercial aluminum-silicon alloy are described. The corrected values of sigma(u) and other mechanical characteristics are shown to meet the standard requirements.

WOS,
Scopus

Держатели документа:
Computer Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
ИВМ СО РАН

Доп.точки доступа:
Koksharov, I.I.; Кокшаров, Игорь Ильич; Krushenko, G.G.; Крушенко, Генрих Гаврилович

    Diagrams of the state of a steady-state arc discharge in hydrogen and helium
[Text] / E. N. Vasil'ev // Tech. Phys. - 2014. - Vol. 59, Is. 12. - P1775-1779, DOI 10.1134/S1063784214120287. - Cited References: 12 . - ISSN 1063-7842. - ISSN 1090-6525
РУБ Physics, Applied

Аннотация: The temperature, electric field strength, and specific and integrated powers of energy mechanisms of an axisymmetric steady-state equilibrium arc discharge in hydrogen and helium under atmospheric pressure are calculated for various values of the current and radius. The results of calculations are presented in the form of state diagrams intended for estimating the main energy characteristics of electric arcs.

WOS

Держатели документа:
Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk 660036, Russia
ИВМ СО РАН

Доп.точки доступа:
Vasil'ev, E.N.; Васильев, Евгений Николаевич

    Theoretical description of spin-selective reactions of radical pairs diffusing in spherical 2D and 3D microreactors
/ K. L. Ivanov, V. M. Sadovsky, N. N. Lukzen // J Chem Phys. - 2015. - Vol. 143, Is. 8, DOI 10.1063/1.4928648 . - ISSN 0021-9606
Аннотация: In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting experimental data for magnetic field effects on RP recombination in confined space and (ii) for describing kinetics of chemical reactions, which occur predominantly on the surfaces of biomembranes, i.e., lipid peroxidation reactions. © 2015 AIP Publishing LLC.

Scopus,
WOS

Держатели документа:
International Tomography Center, Siberian Branch, Russian Academy of Sciences, Institutskaya St. 3a, Novosibirsk, Russian Federation
Novosibirsk State University, Pirogova St. 2, Novosibirsk, Russian Federation
Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/44, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Sadovsky, V.M.; Садовский, Владимир Михайлович; Lukzen, N. N.

    Estimate for the strength of the electric field penetrating from the Earth’s surface to the ionosphere
/ V. V. Denisenko // Russ. J. Phys. Chem. B. - 2015. - Vol. 9, Is. 5. - P789-795, DOI 10.1134/S199079311505019X . - ISSN 1990-7931

Кл.слова (ненормированные):
atmosphere -- electric conductivity -- electric field -- ionosphere -- lithosphere -- mathematical modeling -- precursors of earthquakes

Аннотация: Known models of the penetration of the electric field from the Earth’s surface to the ionosphere due to the electric conductivity of the atmosphere, including models with external currents, are analyzed. Principle disadvantages of models predicting a considerable penetration of the field to the ionosphere are described. It is shown that the penetrating fields are too weak and this makes it impossible to detect them in data of satellite measurements on the background of usual ionospheric fields. A conclusion is made about the necessity to study other physical processes providing the influence of lithospheric processes on the ionosphere. © 2015, Pleiades Publishing, Ltd.

Scopus,
WOS

Держатели документа:
Institute of Computational Modelling, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Денисенко, Валерий Васильевич

    Observations of hydrophysical characteristics of stratified salt lake shira (Siberia) as an important part of its environmental monitoring
/ L. A. Kompaniets, T. V. Iakubailik // International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. - 2015. - Vol. 2: 15th International Multidisciplinary Scientific Geoconference and EXPO, SGEM 2015 (18 June 2015 through 24 June 2015, ) Conference code: 153969, Is. 3. - P635-642 . -
Аннотация: To understand the mechanisms of formation of water quality it is necessary to study both biological and chemical properties of a lake as well as its hydro regime. For many years researchers have focused on the study of chemistry and biology of Lake Shira (situated in Siberia), but a detailed investigation of its hydro regime has become possible only recently with the development of modern measuring instruments. Using the latest generation of measuring devices we have obtained the hydrophysical characteristics of the stratified salt lake in situ (air and water temperature, wind strength and direction, water velocity). Relationships between the measured data have allowed us to analyze the flow in the lake as a whole, thus outlining the problem of determining lake ecological status in the period under observation. © SGEM2014.

Scopus

Держатели документа:
ICM SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Yakubaylik, T.V.; Якубайлик, Татьяна Валерьевна; Компаниец, Лидия Алексеевна

    Numerical Study of Mountain System Evolution along the Tarim-Altay Profile
[Text] / V. D. Suvorov [et al.] ; ed.: V. E. Panin, S. G. Psakhie, V. M. Fomin // INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL : AMER INST PHYSICS, 2015. - Vol. 1683: International Conference on Advanced Materials with Hierarchical (SEP 21-25, 2015, Tomsk, RUSSIA). - Ст. UNSP 020224. - (AIP Conference Proceedings), DOI 10.1063/1.4932914. - Cited References:11 . -
РУБ Materials Science, Multidisciplinary + Physics, Applied

Аннотация: The paper reports the numerical modeling results on the Earth's crust deformation along the Tarim-Altay profile under gravity and lateral compression. Modeling was performed to study how the strength properties and block structure of the crust section influence the formation of plastic deformation zones, day surface relief and the Moho deflection. Conditions were estimated in which mountains grow under certain geological and geophysical characteristics, including mountain root formation. The deformation process was considered in a 2D elastic-plastic formulation for the vertical section of the crust and upper mantle down to a depth of 90 km.

WOS,
Scopus,
Смотреть статью

Держатели документа:
Trofimuk Inst Petr Geol & Geophys SB RAS, Novosibirsk 630090, Russia.
Inst Strength Phys & Mat Sci SB RAS, Tomsk 634055, Russia.
Inst Computat Modeling SB RAS, Krasnoyarsk 660036, Russia.
Novosibirsk State Univ, Novosibirsk 630090, Russia.

Доп.точки доступа:
Suvorov, V. D.; Stefanov, Yu. P.; Pavlov, E. V.; Kochnev, V.A.; Кочнев, Владимир Алексеевич; Melnik, E. A.; Tataurova, A. A.