Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 8

    Optical cooling and trapping of tripod-type atoms with rectified radiation forces
[Electronic resource]. - Electronic text data / I.V. Krasnov. - Electronic text data // Cornell University Library. - 2010


Полный текст на сайте arxiv.org

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Краснов, Игорь Васильевич

    All-optical trapping of strongly coupled ions
[Text] / I. V. Krasnov, L. P. Kamenshchikov // Opt. Commun. - 2014. - Vol. 312. - P192-198, DOI 10.1016/j.optcom.2013.09.036. - Cited References: 21 . - ISSN 0030-4018. - ISSN 1873-0310
РУБ Optics
Рубрики:
FORCE
   ATOMS

   RECTIFICATION

   EQUATIONS

Кл.слова (ненормированные):
Optical trap -- Ion trap -- Rectified gradient force -- Coulomb clusters

Аннотация: We present and analyze a novel method of long-time ion trapping. This purely optical method is based on the action of rectified gradient forces on the ions in a 3D dissipative polychromatic optical superlattice which allows one to form super-deep potential wells for the ions. The ion trap presented ensures the possibility of long-time confinement both of single ions and small ordered ensembles of strongly coupled ions, i.e. ion (Coulomb) clusters. We demonstrate, by the numerical simulations of stochastic ion motion, the trapping of two-ion clusters for times exceeding several seconds. (C) 2013 Elsevier B.V. All rights reserved,

Полный текст на сайте издательства

Держатели документа:
ИВМ СО РАН

Доп.точки доступа:
Krasnov, I.V.; Краснов, Игорь Васильевич; Kamenshchikov, L.P.; Каменщиков, Леонид Петрович

    Laser cooling and Wigner crystallization of rarefied plasma
[Text] / A. P. Gavrilyuk, I. V. Krasnov, N. Y. Shaparev ; ed. IV Krasnov // 11TH INTERNATIONAL VAVILOV CONFERENCE ON NONLINEAR OPTICS. Ser. PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE) : SPIE-INT SOC OPTICAL ENGINEERING, 1998. - Vol. 3485: 11th International Vavilov Conference on Nonlinear Optics (JUN 24-28, 1997, NOVOSIBIRSK, RUSSIA). - P142-150, DOI 10.1117/12.328228. - Cited References: 0 . - ISBN 0277-786X. - ISBN 0-8194-2943-0
РУБ Optics

Кл.слова (ненормированные):
cooling -- trapping -- plasma -- optical resonance -- crystallization

Аннотация: For the first time the optical method of electron-ion plasma cooling, trapping anti crystallizing (ou microscale) due to laser radiation action an plasma with resonant ions is proposed.

WOS

Держатели документа:
RAS, Siberian Branch, Krasnoyarsk Comp Ctr, Krasnoyarsk, Russia
ИВМ СО РАН

Доп.точки доступа:
Gavrilyuk, A.P.; Гаврилюк, Анатолий Петрович; Krasnov, I.V.; Краснов, Игорь Васильевич; Shaparev, N.Ya.; Шапарев, Николай Якимович; Krasnov, IV \ed.\

    Laser cooling and Wigner crystallization of resonant plasma in magneto-optical trap
[Text] / A. P. Gavrilyuk, I. V. Krasnov, N. Y. Shaparev // Laser Phys. - 1998. - Vol. 8: 2nd International Conference on Modern Problems of Laser Physics (JUL 28-AUG 02, 1997, NOVOSIBIRSK, RUSSIA), Is. 3. - P653-656. - Cited References: 10 . - ISSN 1054-660X
РУБ Optics + Physics, Applied
Рубрики:
IONS

Аннотация: For the first time, the optical method of electron-ion plasma cooling, trapping, and crystallizing (on microscale) due to laser and microwave radiation action on plasma with resonant ions is proposed.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Krasnoyarsk Comp Ctr, Moscow 117901, Russia
ИВМ СО РАН
Krasnoyarsk Computer Center, Siberian Division, Russian Academy of Sciences, Russian Federation

Доп.точки доступа:
Krasnov, I.V.; Краснов, Игорь Васильевич; Shaparev, N.Ya.; Шапарев, Николай Якимович; Гаврилюк, Анатолий Петрович

    Conditions for formation and trapping of the two-ion Coulomb cluster in the dissipative optical superlattice
[Text] / I. V. Krasnov // Chin. Phys. B. - 2015. - Vol. 24, Is. 6. - Ст. 063701, DOI 10.1088/1674-1056/24/6/063701. - Cited References:22 . - ISSN 1674-1056. - ISSN 1741-4199
РУБ Physics, Multidisciplinary
Рубрики:
ATOMS
   LATTICES

   FORCE

   RADIATION

   MOTION

   IONS

Кл.слова (ненормированные):
optical trap -- ion trap -- rectified gradient force -- Coulomb clusters

Аннотация: Conditions have been studied under which a polychromatic optical superlattice can form and trap the Coulomb cluster of two strongly interacting ions. In our previous work (Krasnov I V and Kamenshchikov L P 2014 Opt. Comm. 312 192) this new all-optical method of obtaining and confining the Coulomb clusters was demonstrated by numerical simulations for special values of the optical superlattice parameters and in the case of Yb ions. In the present paper the conditions are explicitly formulated, under which the long-lived two-ion cluster in the superlattice cell is formed. The peculiarity of these conditions is the renormalization of the ion-ion Coulomb interaction. Notably, the renormalized Coulomb force is determined by the effective charge which depends on the light field parameters and can strongly differ from the "bare" ion charge. This result can be accounted for by the combined manifestation of the quantum fluctuations of optical forces, nonlinear dependence of these forces on the velocity, and non-Maxwellian (Tsallis type) velocity distribution of the ions in the optical superlattice. Explicit analytical formulas are also obtained for the parameters of the optical two-ion cluster.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Inst Computat Modeling, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Krasnov, I.V.; Краснов, Игорь Васильевич

    Ions in the cell of the dissipative optical superlattice: cooling, trapping and Coulomb cluster formation
[Text] / I. V. Krasnov, L. P. Kamenshchikov // Laser Phys. - 2015. - Vol. 25, Is. 11. - Ст. 115501, DOI 10.1088/1054-660X/25/11/115501. - Cited References:26 . - ISSN 1054-660X. - ISSN 1555-6611
РУБ Optics + Physics, Applied
Рубрики:
FORCE
   ATOMS

   RECTIFICATION

   EQUATIONS

   LIMIT

Кл.слова (ненормированные):
ion trap -- optical trap -- rectified gradient force -- Coulomb clusters

Аннотация: On the basis of numerical simulations and analytical calculations it is proved that the dissipative optical superlattice induced by the rectified gradient force is able to create and trap cold ion Coulomb clusters. In contrast to our previous work (2014 Opt. Commun. 312 192), in the present paper, we do not use the approximation of slow ions (SI), but take into account the non-conservative nature of the trapping force in the optical superlattice as well as the velocity dependence of the friction coefficient of ions and multiplicative nature of the quantum fluctuations of optical forces. It is shown that these factors significantly affect both the formations conditions of the ion Coulomb clusters and their characteristics. It is also demonstrated that their consequences can be well-described by the renormalized SI model. In this model, the electric ion charge is replaced by the effective charge which depends on the light field parameters.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Inst Computat Modelling, Siberian Div, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kamenshchikov, L.P.; Каменщиков, Леонид Петрович; Краснов, Игорь Васильевич

    Titanium nitride as light trapping plasmonic material in silicon solar cell
/ N. Venugopal [et al.] // Opt Mater. - 2017. - Vol. 72. - P397-402, DOI 10.1016/j.optmat.2017.06.035 . - ISSN 0925-3467

Кл.слова (ненормированные):
Photovoltaics -- Plasmonics -- Titanium nitride -- Absorption spectroscopy -- CMOS integrated circuits -- Efficiency -- Gold -- Metals -- MOS devices -- Nanoparticles -- Nanostructured materials -- Nitrides -- Optoelectronic devices -- Plasmons -- Semiconductor devices -- Silicon -- Silver -- Solar cells -- Solar power generation -- Thin film solar cells -- Thin films -- Time domain analysis -- Tin oxides -- Titanium -- Titanium compounds -- Titanium nitride -- Absorption enhancement -- Complementary metal oxide semiconductors -- Nanoparticle diameter -- Other opto-electronic devices -- Photovoltaics -- Plasmonic nanoparticle -- Plasmonics -- Thin-film silicon solar cells -- Silicon solar cells

Аннотация: Light trapping is a crucial prominence to improve the efficiency in thin film solar cells. However, last few years, plasmonic based thin film solar cells shows potential structure to improve efficiency in photovoltaics. In order to achieve the high efficiency in plasmonic based thin film solar cells, traditionally noble metals like Silver (Ag) and Gold (Au) are extensively used due to their ability to localize the light in nanoscale structures. In this paper, we numerically demonstrated the absorption enhancement due to the incorporation of novel plasmonic TiN nanoparticles on thin film Silicon Solar cells. Absorption enhancement significantly affected by TiN plasmonic nanoparticles on thin film silicon was studied using Finite-Difference-Time-Domain Method (FDTD). The optimal absorption enhancement 1.2 was achieved for TiN nanoparticles with the diameter of 100 nm. The results show that the plasmonic effect significantly dominant to achieve maximum absorption enhancement g(?) at longer wavelengths (red and near infrared) and as comparable with Au nanoparticle on thin film Silicon. The absorption enhancement can be tuned to the desired position of solar spectrum by adjusting the size of TiN nanoparticles. Effect of nanoparticle diameters on the absorption enhancement was also thoroughly analyzed. The numerically simulated results show that TiN can play the similar role as gold nanoparticles on thin film silicon solar cells. Furthermore, TiN plasmonic material is cheap, abundant and more Complementary Metal Oxide Semiconductor (CMOS) compatible material than traditional plasmonic metals like Ag and Au, which can be easy integration with other optoelectronic devices. © 2017 Elsevier B.V.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Computational Modeling, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation
L.V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Venugopal, N.; Gerasimov, V. S.; Ershov, A. E.; Karpov, S. V.; Polyutov, S. P.

    A study of metastable ion Coulomb crystals in a polychromatic all-optical trap: Decay process analysis by using supercomputer simulations
/ I. V. Krasnov, L. P. Kamenshchikov // Eur. Phys. J. D. - 2019. - Vol. 73, Is. 10. - Ст. 224, DOI 10.1140/epjd/e2019-100252-5 . - ISSN 1434-6060

Кл.слова (ненормированные):
Cold Matter and Quantum Gas

Аннотация: Abstract: Metastable ion Coulomb crystal (ICC) in the polychromatic optical superlattice (OSL) created by so-called rectified gradient forces is studied. Our analysis is based on the numerical solution of the nonlinear stochastic differential equations taking into account the trapping and dissipative forces, their quantum fluctuations, and Coulomb repulsion of ions. The key question is how long will this metastable highly ordered crystalline structure persist. The critical parameter determining the ICC destruction times td is the OSL period L (at fixed intensity values of the optical fields). Our simulations demonstrate that td of the ICC, consisting of several tens of mercury ions, experiences giant changes (by four orders of magnitude) at relatively slight variations of the optical superlattice period L in the range from 0.35 to 0.70 mm. We have shown that the dependence td (L) can be approximated by the Arrhenius-like equation with an effective activation energy which is nonlinearly dependent on the OSL period L. These results explain the ultrahigh sensitivity td (L) to the OSL period L and show how to adjust L to ensure all-optical confinement of ICC in the OSL from a fraction of a second to one and half minutes. Graphical abstract: [Figure not available: see fulltext.]. © 2019, EDP Sciences / Societa Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Computational Modeling of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Krasnov, I. V.; Kamenshchikov, L. P.